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PREFACE

With the rise of the latest scientific revolution in archaeology, it may seem that 
we do not need to worry any more about the old theoretical, methodological 
and empirical debates about style, archaeological cultures, diffusion, seriation, 
types, classification etc., as the hard sciences will provide the answers that 
we seek, just as analysis of ancient DNA resolved one of the long-standing 
questions about the nature of Neolithic expansion in Europe. Although I fully 
embrace the application of the hard sciences in archaeology, a part of me has 
always felt that the use of biology, physics and chemistry, with the aim to 
answer the traditional archaeological questions, was almost like jumping to 
the answers pages with the solutions to the exercise questions at the end of a 
textbook. On a more serious note: there is nothing wrong with this – the latest 
developments in archaeological science have pushed forward the boundaries 
of our knowledge in ways which were unimaginable a few decades ago; and we 
should take any scientific path that will generate positive knowledge about the 
past. But the patterns of material culture, which were the subject of traditional 
archaeological research, are still there, and they contain relevant information 
about the past. If archaeologists do not continue to persist in developing the-
ories and methods to deal with this aspect of the archaeological record, no one 
else will. 

This book is an exploration of archaeological theory, and represents an at-
tempt to illustrate how cultural transmission theory, as a relatively novel tool 
in the archaeologist’s intellectual toolbox, can be used to explore, understand 
and explain some of these traditional and fundamental issues in archaeology. 
The book grew out of research that I have performed intermittently over the 
last nine years, most of which has remained unpublished. My fascination with 
cultural transmission theory and evolutionary archaeology dates back to the 
days when I was a PhD student, but for various reasons, I have never been 



able to devote my full attention to it. During the past 15 years, I have been 
building and upgrading the skills necessary to do research in this complex 
field. The most important skill was the ability to make computer simulations. 
This allowed me to play and experiment with potential scenarios of the past. 
I quickly discovered that these experiments helped me to understand better 
the complex interplay between the properties of the cultural process and the 
archaeological record. I also discovered that the machinery I built can be used 
to test hypotheses and generate new theoretical knowledge. So, this is how 
this book came to be. It was written around the results I had accumulated over 
the years. My ambition with this book has not been to make a comprehensive 
study of the fundamental archaeological problems related to the formal var-
iability of material culture in space and time, but to write about this subject 
from the perspective of the results of my own simulation experiments and 
the insights they provided. My hope is that the readers will benefit from this 
book in the same way as I did while I was creating the material for it – that it 
will deepen their understanding of the intricate connections between the spa-
tio-temporal distributions of types and assemblages, and the processes which 
generated them.

I wish to express my deepest gratitude to the reviewers: Enrico Crema, Stephen 
Shennan and Aleksandar Palavestra. Their detailed comments and suggestions 
have helped me to improve the original text significantly – they have indeed 
offered true guidance, for which I am immensely grateful. I would also like to 
express my gratitude to Jonathan Boulting for the language editing. Of course, 
the responsibility for any remaining errors and omissions is exclusively mine.

I am also thankful to Martin Furholt for kindly sharing his Baden pottery da-
tabase with me, and to Miljana Radivojević, who helped me to get copies of 
chapters and papers which were not available to me. Finally, I wish to kindly 
thank my colleagues Sonja Vuković and Sofija Stefanović from the Laboratory 
of Bioarchaeology for their assistance with the editorial and publishing pro-
cesses. The work on the book was supported by the Ministry of Science of the 
Republic of Serbia (contract number 451-03-47/2023-01/ 200163).
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Chapter 1

THE OLD PROBLEMS AND  
THE NEW TOOLS

1.1.  THE OLD PROBLEMS

Lyman and colleagues started their major review of culture-historical archae-
ology in America by mentioning Gordon Willey’s (1953) and Albert Spaulding’s 
(1960) minimalistic definitions of archaeology as a study of the formal var-
iability of material culture in space and time (Lyman et al. 1997: v). Indeed, 
it is difficult to find a more profound description of archaeology’s essence 
than that. Why are two objects (e.g. two clay pots) or assemblages of objects 
from different places and times similar or different? In what ways are social 
structures and processes reflected in the spatio-temporal patterns of stylistic 
and technological variability within and between communities? These are the 
fundamental questions of archaeology. The intricate interplay of form, space, 
and time is the subject of this book. I will begin by outlining in broad strokes 
the old problems of archaeological inquiry, as they are both the subject and 
the main motivation for undertaking the research presented in the chapters 
to come.

Traditional culture-historical archaeology excelled in the description of the 
formal variability of material culture in time and space. The fact that the for-
mal properties of the material culture change through time was utilized by the 
culture-historical archaeologists to create chronologies (Lyman et al. 1997; 
Lyman et al. 1998; O’Brien & Lyman 1999). The patterns in time became cru-
cial for the reconstruction of relative chronological relations between artifacts 
and assemblages via the seriation method. Even though the reasons for the 
observed patterns were not well understood, the seriation method worked. 
And there are at least two reasons why these patterns in time still matter to-
day. The first reason is that the patterns themselves hold clues about the pro-
cesses that generated them, and these processes can be studied if the suitable 
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theoretical framework is available. In other words, the temporal variability of 
material culture is not something that is only useful for relative dating, but 
can also reveal important information about past social and cultural dynamics. 
The second reason is that the development of methods of absolute dating did 
not eliminate the need for constructing relative chronologies. The precision 
of radiocarbon dating, which is the most commonly used method, is usually 
not sufficient to inform us about the temporal order of events all of which oc-
curred within the same 100-200 years. Moreover, in such cases, knowing the 
relative temporal sequence of the dates can be used to narrow down the ranges 
of the dates within the Bayesian modeling framework. Therefore, we still need 
the methods of relative dating. A deep theoretical understanding of the pro-
cesses which generate temporal patterns can be used to improve the seriation 
method and to obtain a better grasp of its potential and limitations.

The patterns of formal variability of material culture in space and the spatial 
distribution of culture became the central issues of anthropology and archae-
ology in the 20th century, and continue to be important today (Hodder 1978; 
Roberts & Vander Linden 2011). It became obvious very quickly to both ar-
chaeologists and anthropologists of the late 19th and early 20th centuries that 
culture was spatially clustered – that similar cultural elements are usually 
found in the same region, and that different regions usually display different 
cultural elements. The explanation of such patterns has represented a major 
theoretical challenge in both archaeology and anthropology (Shennan 1994). 
The processes of cultural diffusion and migration were invoked to explain this 
variability within the culture-historical paradigm. The mapping of cultural 
elements in space and understanding of the resulting patterns became a major 
concern of culture-historical anthropology in its various schools and versions, 
from Bastian and Ratzel in the 19th century, to the Vienna school of diffu-
sionists, and particularly Franz Boas and his students in America (Палавестра 
2011: 107-118). 

In archaeology, the spatial clustering of material culture and its interpretation 
also became a major issue in the first half of the 20th century, especially in the 
works of Kossinna and Childe (Trigger 2006), giving rise to the important the-
oretical concept of archaeological culture (Shennan 1994; Clarke 1978; Roberts 
& Vander Linden 2011; Shennan 1978). The concept of archaeological culture 
is traditionally defined as “... certain types of remains – pots, implements, orna-
ments and house forms – constantly recurring together” (Childe 1929: v-vi). David 
Clarke (1978: 188) later reformulated Childe’s classic definition of archaeolog-
ical culture, as “…a polythetic set of specific and comprehensive artefact-type cate-
gories which consistently recur together in assemblages within a limited geographical 
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area”. The implication of Clarke’s definition is that archaeological cultures are 
equivalent to statistical groups (e.g. clusters resulting from cluster analysis) 
of assemblages, because the groups are defined by stylistic similarity between 
units, and the units do not have to be identical in order to be in the same group 
(Porčić & Nešić 2014). The central question which emerged from the works 
of Kossinna and Childe was how to relate the archaeological cultures to the 
anthropological, ethnographic and historical units such as linguistic group, 
society, polity, and ethnic group.

The concept of archaeological culture has been employed in the traditional 
culture-historical approach to identify and organize the formal variability of 
material culture across time and space into convenient and manageable units. 
The assessment of similarities or differences was largely based on subjective 
estimates rather than statistical analyses (except in American culture-histor-
ical archaeology, which was more oriented towards quantitative analysis – see 
Lyman et al. 1997). Despite the polythetic nature of the concept, in practice, 
the definition of archaeological cultures was usually based on a single class of 
material culture, knapped stone artifacts for the pre-Neolithic, and pottery for 
the Neolithic and post-Neolithic periods (Furholt 2008; 2020). The resolution 
and meaning of these units in terms of an underlying anthropological and 
historical reality remains unclear (Porčić 2013b). In the traditional paradigm, 
archaeological cultures served both as empirical patterns and explanatory de-
vices, and were often equated with ethnic, linguistic or socio-political groups 
(Shennan 1994). Thus, a map with a distribution of archaeological cultures 
from one specific period in time was usually understood as a historical or eth-
nographic map with the different polities represented in space. Although few 
archaeologists today would explicitly claim that archaeological cultures equate 
with ethnic or linguistic groups, many still use the term with the implicit idea 
that these entities represent vague equivalents of ethnographically recorded 
groups or reflections of some kinds of socio-political entities. 

Spatially bounded groups of sites or assemblages with typologically similar 
material cultures can be characterized as the results of an informal cluster 
analysis. In this light, it is not unreasonable to assume that, in many cases, 
the traditional concept of archaeological culture did capture significant pat-
terns of formal variability of material culture in time and space. After all, the 
formal cluster analysis also involves subjective elements in choosing the sim-
ilarity/distance measure and the clustering algorithm1 (Shennan 2004; Baxter 

1  The cluster analysis may sometimes produce different groupings, depending on the clustering al-
gorithm and the distance metric. Therefore, even the objectivity of the patterns themselves is not 
absolute.



20

Chapter 1

1994). Therefore, the fact that archaeological cultures are subjectively defined 
is in most cases a minor technical issue, as the informal and formal clustering 
methods may produce similar results (but see Ivanovaitė et al. 2020; Sauer & 
Riede 2019), and they are all arbitrary to a degree. Of course, it is always better 
to have a quantified description of the archaeological record, but the identifi-
cation and description of patterns are not the main problems here.

The true problem is in the nature of the patterns and their interpretation. A 
cluster analysis will produce groups regardless of whether such groups rep-
resent discrete sociocultural/ethnic/political/linguistic entities or not. For ex-
ample, if a cluster analysis is applied to a sample of units with equidistant 
values in one dimension, the units will be organized in the output into discrete 
groups, even though such groups do not exist. There are statistical ways to 
evaluate the validity of groups created in such a way, but the point is that 
archaeologists always deal with some kind of pattern while they attempt to 
organize the variability of the past record into discrete units. But even if a 
true pattern of discrete grouping exists, it does not automatically reveal the 
mechanism which created it – or, in other words, these groupings or patterns 
need to be explained and interpreted after further probing. The problem goes 
beyond drawing boundaries based on the distribution of material culture in 
space. While the overwhelming evidence nowadays demonstrates the futility 
of the term ‘archaeological cultures’ as an interpretative framework (Shennan 
1994), we may still legitimately wonder what stands behind the spatial pat-
terns of material culture variability (Shennan et al. 2015; Porčić 2013b).

The problem of interpreting archaeological cultures also has a deeper episte-
mological dimension related to the distinction between essentialism (typo-
logical thinking) and population (materialist) thinking (Mayr 1994; O’Brien 
& Lyman 2000: 31-36). The concept of archaeological cultures corresponds 
closely to an essentialist ontology. The archaeological cultures are imagined 
as holistic entities with an essence which is materialized in each artifact or 
assemblage belonging to a particular culture2. In contrast, the population 
thinking approach regards the individual variation as real. According to this 
view, population properties are statistical summaries – they are abstractions, 
and represent the consequences of processes which operate on the level of 
individuals. The essentialist view is limiting, as it imposes one particular 

2  This statement perhaps fits better with the view of archaeological culture in European archaeology 
than in American archaeology. Even though Binford and other New Archaeologists portrayed Ameri-
canist culture-historical archaeology as subscribing to the normative theory of culture in archaeology 
(Binford 1965), which is essentialist, just as is its European counterpart, Lyman and O’Brien (2004) 
debate this characterization and present a complex and more nuanced picture of the role of norma-
tive theory in Americanist archaeology.
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interpretation upon the spatiotemporal clustering of material culture; whereas 
the population thinking approach is better suited to investigating the process-
es which have generated the formal variability of material culture. 

In the previous paragraphs I was using the term ‘formal variability’ of mate-
rial culture rather vaguely, to cover all kinds of variability between the objects 
and features of material culture. In this context, the form is understood in the 
most general sense suggested by Dunnell (1978) – as any artificial attribute 
without the specification of scale; so it can refer to the variation in attributes 
of objects, groups of attributes, types (variants) of objects, or the frequency 
structure of assemblages. This variability is associated with the stylistic and/
or functional/technological aspects, depending on the choice of attributes. The 
functional and technological variations of material culture also represent the 
formal variation of material culture, and as such, are legitimate phenomena 
for research. But in this book I limit myself to the study of stylistic aspects of 
formal variation. 

Sackett conceptualized style as isochrestic variation – whenever there are func-
tionally equivalent ways of making or doing something, there is room for style 
(Sackett 1982; 1986). In Sackett’s view, style is in most cases passive, in the 
sense that stylistic variation (especially between groups) is not a product of 
the intention to differentiate but a consequence of the fact that in different 
communities there are different norms for doing things which are transmitted 
by socialization (see also Binford 1963). The key point is that style refers to 
those properties which do not have a function. It refers to items which per-
form the same function – they are functional equivalents (Binford 1963: 92).

The concept of style (vs. function) has been one of the most debated topics 
in archaeological theory (Hegmon 1992). Most of this debate was focused on 
whether style itself has a function and what the functions of style are. For 
example, Wobst (1977) suggested that style has a function in the realm of 
non-verbal communication – e.g. to signal group affiliation. Sackett (1986) 
also does not exclude the possibility that style may also have some kind of 
function, e.g. by taking on an iconological role. Wiessner defined two modes 
of style – emblemic and assertive (Wiessner 1983). Emblemic style refers to the 
variation in form used to signal group identity and boundaries. This kind of 
style cannot be used to measure interaction, as all or most members of the 
group use one variant. Assertive style is personal, in the sense that it does not 
refer to a group but is a consequence of personal choice and, as such, supports 
personal identity. According to Wiessner, assertive style can be used to meas-
ure interaction between people, as it is conducive to copying between peers 
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(e.g. one may decide, for whatever personal reason, to prefer one variant over 
another from the repertoire that she or he is familiar with). Therefore, style 
can indeed fulfill some kind of function in the sociocultural system.

Hegmon (1992) finds the distinction between style as a component of human 
activity and style as a pattern of variation somewhat problematic; but I find 
it extremely useful to delineate what I mean by style in this book. Style as a 
component of human activity can and often does have a function from the 
social and cultural perspective (e.g. in reflecting individual or group identity); 
but, by definition, style as a formal property of an object cannot have a func-
tion from the perspective of the object – style resides in the properties of an 
object, which are free to vary without influencing the physical performance 
of the object i.e. the object’s practical function. I will use the term stylistic 
variability primarily to denote the patterns of formal variation, whereas the 
mechanisms which have generated the patterns are kept separate conceptual-
ly. In this context, the most relevant feature of formal variation is that for each 
attribute or artifact type one can choose between different options which are 
functionally equivalent (Binford 1963), where function is understood strictly 
in terms of the object’s use. For example, the choice between the zig-zag and 
cross-hatched decoration patterns placed on a cooking pot does not have any 
influence on the effectiveness of the pot in performing its function as a con-
tainer for cooking food. In this sense, the term style, as used here, is closest to 
Sackett’s conceptualization of style as isochrestic variation. 

1.2.  THE NEW TOOLS

All these problems were defined in the early days of traditional culture-his-
torical archaeology, and theoretical constructs such as diffusion, archaeological 
culture, style, as well as methodological solutions such as seriation, are a legacy 
of the paradigm of culture history. In the heyday of processual archaeology, 
questions of stylistic variability usually took the back seat, as secondary to 
issues of subsistence, economy and socio-cultural evolution, but could still be 
found in the works of the New Archaeologists associated with ceramic soci-
ology research (Longacre 1970; Hill 1966; Deetz 1968). In postprocessual ar-
chaeology, the formal variation of material culture was often interpreted in 
relation to individual agency, identity, gender, etc. 

However, there was no coherent and comprehensive theory produced by any of 
the aforementioned schools of archaeological thought that would systemati-
cally answer the fundamental questions of how and why patterns are generat-
ed. In the late 20th century, a new anthropological and archaeological theory 
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emerged as the perfect candidate for solving these old and fundamental ar-
chaeological problems. This is the evolutionary cultural transmission theory. 
This theory was developed as a part of the wider agenda to integrate biological 
and cultural evolution, and it is based on the thesis that cultural transmission 
has the properties of a Darwinian evolution (Boyd and Richerson 1985). Just as 
the evolutionary theory in biology provides an explanation for the change of 
frequency of genotypes and phenotypes in space and time, the cultural trans-
mission theory should do the same for the spatio-temporal patterns of types 
and stylistic attributes of material culture in the archaeological record. As not-
ed by Eerkens and Lipo (2007), cultural transmission was assumed in many 
anthropological and archaeological theories and models, but modern cultural 
transmission theory is specific for its evolutionary basis and its comprehen-
siveness in addressing the phenomena discussed above:

“While culture historians lacked an explicit theoretical basis and instead made 
their arguments based on a series of empirical generalizations (Lyman et al. 1997), 
CT [cultural transmission] today derives from a much more structured theoreti-
cal model, specifically Darwinian models of evolution. Thus, early and mid-20th 
century diffusion models were focused on the ‘‘culture’’ as a unit of study, and 
ideas were perceived as being diffused in and out of groups of people who comprise 
sets of bounded entities. Darwinian theory, of which modern CT is a part, is based 
more on the actions and decisions of individuals. Moreover, while diffusionists like 
Boas and Kroeber were interested in change, they were less interested in rates of 
change, rates of error during transmission, what conditions might foster greater or 
slower rates of error, different transmission mechanisms, and how diffusion could 
inform more generally on prehistoric cultures. For most culture historians, diffu-
sion remained a sufficient explanation to account for similarity in the absence of 
the movement of people (i.e., migration) or goods (i.e., trade) (O’Brien et al. 2005). 
As a result, modern CT models are generally more rigorous in their definition and 
more quantitative in their application.”

(Eerkens and Lipo 2007: 241)

In the last 25 years, the research performed within this relatively new theoret-
ical framework has resulted in significant and unprecedented advances in our 
understanding of the traditional archaeological problems regarding the for-
mal variation of material culture in space and time. In this book, I follow this 
line of research, and utilize cultural transmission theory for the purpose of 
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archaeological theory building. The research presented in the central chapters 
of the book is theoretical research aimed at exploring three general questions:

1)  How do different models of cultural transmission translate into patterns of 
stylistic variation in space?

2)  What are the key factors determining the temporal patterning of material 
culture in the archaeological record?

3)  How do the cultural transmission parameters and spatio-temporal obser-
vational scales and frames interact to produce the patterns in the archaeo-
logical record?

The research is based on computer simulation experiments designed to ex-
plore the implications of different scenarios and models of cultural transmis-
sion. This kind of research is well established in the field of cultural evolution-
ary studies in anthropology and archaeology (e.g. Madsen 2020; Gjesfjeld et al. 
2020; Crema et al. 2014b; Kandler & Shennan 2013; Premo 2014; Porčić & Nešić 
2014; Eerkens & Lipo 2005; Lipo et al. 1997), and is becoming a gold standard 
for theoretical explorations in evolutionary archaeology. As will soon become 
clear, one of the major advantages of the cultural transmission theory is that 
it allows the systematic construction of quantitative models which can further 
be implemented and explored by means of mathematical analysis and com-
puter simulation. The relevance of such an endeavor is directly determined 
by the degree to which these models truly reflect the underlying reality, and 
whether anything similar can be found in the empirical record. I address this 
issue many times in the book. And I attempt to demonstrate that the models 
are capable of generating a wide range of patterns that we can actually observe 
in the empirical world. 

1.3.  THE PURPOSE AND OUTLINE OF THE BOOK

My ambition with this book is to illustrate how we can translate our tradition-
al archaeological problems into the conceptual framework of cultural trans-
mission theory, and how we can obtain theoretical and methodological ben-
efits from it. The main aim is to show that the concepts and terms of cultural 
transmission theory are “good to think” with (to borrow the phrase of Le-
vi-Strauss), as regards the fundamental problems of traditional archaeology. 

It is conceptualized as a hybrid between a review text and original research. For 
many of the computer simulation experiments presented in the core chapters 
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of the book, the results can be anticipated on the basis of the existing liter-
ature, as they represent another confirmation and illustration of the already 
established hypotheses. These experiments fulfill the didactic purpose of the 
book – they are used as tools to illustrate how cultural transmission theo-
ry works when applied to archaeological problems. On the other hand, I use 
computer simulation to test specific hypotheses and generate new knowledge, 
in order to demonstrate the research potential of the approach. Therefore, the 
book is primarily intended for experts in the field, but also for postgraduate 
students and archaeologists interested in archaeological theory and method. 

The book consists of seven chapters. In the introductory chapter, I lay out the 
motivation for my research – the interpretation of the formal variability of 
material culture in space and time. In the next two chapters, I introduce the 
theoretical and methodological foundations of the research presented in the 
book. Chapter 2 represents a short review of the basic concepts of cultural 
transmission theory and its application in archaeology. It is not a comprehen-
sive review of the field, as some important topics such as cultural phylogenet-
ics and models of cultural transmission related to technology and function, are 
only briefly mentioned. The first two chapters are suitable for the non-expert 
audience, as they lay out the fundamental theoretical problems and provide a 
review of cultural transmission theory and its application in archaeology. Fa-
miliarity with the most relevant topics in the history of archaeological thought 
is assumed for the understanding of this chapter (e.g. Trigger 2006).

Chapter 3 presents the main methods and techniques used to address the key 
issues. To be able to understand the methods and techniques of analysis, the 
reader should have a good grasp of the basic principles of the quantitative 
methods and their application in archaeology. Consulting standard texts on 
this issue, like Shennan (2004) or Van Pool & Leonard (2011), would be a good 
idea for readers who do not have a solid foundation in quantitative methods, 
as these text completely cover the topics needed to understand the statistical 
instruments used in the book. 

Chapters 4, 5, and 6 constitute the core of the book. Chapter 4 explores the 
spatial patterns generated by the implementation of cultural transmission 
models, whereas Chapter 5 explores temporal patterns. In Chapter 6, I bring 
the spatial and temporal perspective together into a single analytical frame-
work. In each of the core research chapters, I perform in silico experiments 
to explore the spatial, temporal and spatio-temporal patterns generated by 
various cultural transmission scenarios; but I also draw upon archaeological 
and ethnographic case studies to show that comparable patterns are indeed 
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found in the empirical world. The opening and closing (discussion) sections of 
the core chapters can be read by the general archeological audience, whereas 
the description of the simulation experiment results and statistical analysis 
are technical and will primarily be of interest to experts in the field of cultural 
transmission studies in archaeology and anthropology.

In the last chapter, I summarize the main results, and present the limitations 
of my approach as well as the prospects for future research. This chapter is of 
general interest, as I come back to fundamental archaeological problems and 
concepts and try to put them into perspective in the light of the findings pre-
sented in the core chapters. 

The technical details, such as the computer simulation code and mathematical 
elaboration of the seriation coefficient, are presented in the appendices in or-
der to make the main text easier to read for the non-expert. A Glossary is also 
provided, for quick reference and clarification of the jargon associated with 
culture transmission theory.
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CULTURAL TRANSMISSION AND 
ARCHAEOLOGY: THEORETICAL AND 
EPISTEMOLOGICAL PERSPECTIVES

Cultural transmission is analogous to genetic transmission in that, although basi-
cally conservative, it can give rise to a form of evolution.

(Dawkins 1976: 203)

2.1.  INTRODUCTION

This chapter has two aims. The first is to introduce basic information about 
the cultural transmission theory as a general anthropological theory, and how 
it became the basis of the evolutionary archeology approach. I will focus on 
those aspects of the theory, i.e. the first principles, the key concepts, and the 
particular cultural transmission models which will be used and explored in 
this book from the archaeological perspective. 

The second aim is to clarify the relationship between cultural transmission 
theory and archaeology, so that the research presented in this book can be 
contextualized and evaluated from an epistemological point of view. In the 
second part of the chapter, I will try to be more precise, by first defining the 
levels and kinds of theory relevant for archaeological work, and then by con-
textualizing cultural transmission theory within this framework, so that the 
archaeological problems I investigate in this book will become clear. 
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2.2.  CULTURAL TRANSMISSION THEORY AS PART OF THE 
DUAL INHERITANCE EVOLUTIONARY THEORY OF 
CULTURE

2.2.1.  First principles

Cultural transmission theory, which is the subject of this book3, is part of the 
general anthropological dual inheritance theory also known as the gene-culture 
coevolution theory (Boyd & Richerson 1985; Richerson & Boyd 2005; Caval-
li-Sforza & Feldman 1981). The main idea of the dual inheritance theory is that 
humans have two channels of inheritance. The first channel is the biological 
genetic inheritance, and the second channel is cultural transmission or social 
learning. The two channels are separate in the sense that information about 
behavior, social institutions, ideas, attitudes or material culture is not encoded 
in the genes, and vice-versa, that genetic information cannot be transmitted 
via cultural transmission (Kronfeldner 2021). Even though the channels are 
separate, they can interact and influence each other in often complex ways. 
For example, the cultural environment may generate selection pressures that 
act on genes, and biological factors may induce cultural response (Levinson & 
Dediu 2013). Of course, the capacity for culture was necessarily the product of 
biological evolution. Only in this sense does biological evolution have primacy 
over cultural evolution in this theoretical framework. Once the capacity for 
cumulative culture4 (Eerkens & Lipo 2007) evolved, cultural evolution became 
a separate process with its own channel of transmission. In other words, there 
are no genes for the Serbian (or any other) language, or for matrilocal resi-
dence, Zoroastrian (or any other) religion, or painted pottery designs. 

Cultural transmission theory is part of dual inheritance theory, and its subject 
is the channel of cultural inheritance. The concept of cultural transmission 
predates dual inheritance theory, as there are older theories (especially within 
culture-historical anthropology and archaeology) where this concept (usu-
ally under the banner of cultural diffusion) was of central importance (Ee-
rkens & Lipo 2007). However, the specificity of cultural transmission theory, 
which is the main subject of this book, is that it has been developed within 

3  There are other brands of cultural evolutionary theory which are not in the focus of this book, such as 
cultural attraction theory, which will be discussed shortly below. 

4  Cumulative culture refers to the potential to preserve cultural inventions by means of social learning, 
and to build upon them, making the culture more complex in time , thus generating behavior and cul-
tural elements that no individual could invent or learn individually (Boyd & Richerson 1996; see also 
Mesoudi & Thornton 2018). The capacity for cumulative culture is not uniquely human, as persistant 
cultural traditions have been recorded among birds and some primates, but the scale of human cu-
mulative culture is more advanced by several orders of magnitude, giving rise to the phenomenon of 
cultural evolution (Boyd & Richerson 1996). 
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the Darwinian evolutionary framework5 (Eerkens & Lipo 2007). It is based on 
the premise that some aspects of culture can be conceptualized and modeled 
as general Darwinian evolutionary process (Mesoudi 2015; 2011; Mesoudi et 
al. 2006; Boyd & Richerson 1985; Dawkins 1976; Cavalli-Sforza & Feldman 
1981). The theory of evolution was originally developed to explain the diver-
sity and origin of biological species. Biological evolution represents a change 
in the frequency of genotypes, and by implication, phenotypes, over time. If 
some variants (alleles) of certain genes have a higher adaptive value, i.e. if 
they increase the probability of their own replication in the next generation 
by generating phenotypic traits that increase the probability of reproduction 
of the carrier organism, then we call this process natural selection. If the al-
leles have the same adaptive value, their frequency in a population over time 
can still change as a consequence of purely stochastic processes and random 
events. This process is called drift, and it drives neutral evolution. In biological 
evolution, the genes that consist of the DNA molecules represent the phys-
ical medium of inheritance. Genes can mutate, which constantly introduces 
new variations into the system, and variability exists both at the levels of the 
genotype and of the phenotype. Both natural selection and drift, along with 
mutations, represent descent with modification.

The crucial point is that the principles of Darwinian evolution apply to any 
system where there is a variability of information at the population level and 
the possibility of its transmission (equivalent to heredity) and modification, 
regardless of the nature of the medium for the storage and transmission of the 
hereditary information (Mesoudi 2011; Richerson & Boyd 2005; Mesoudi et al. 
2006; Mesoudi 2015; Dawkins 1976; Lycett 2015a; Mesoudi et al. 2004). There-
fore, the theory of evolution as well as the process of evolution can be gener-
alized (i.e. separated conceptually from the biochemical basis of the genes and 
the DNA) as being any process which has the aforementioned abstract features. 
This generalization of Darwinian principles to encompass phenomena outside 
of biology is known as universal Darwinism (Dennett 1995: 58; Blackmore 1999: 
10-23). Universal Darwinism elevates the principles of the Darwinian theory of 
evolution to a higher epistemological level – as a basic set of principles behind 
the theories which explain different phenomena in the world where Darwinian 
mechanisms operate, from diversity of life on Earth, to computer viruses, and 
human culture. 

The core of evolutionary cultural transmission theory is the assumption that 
certain aspects of human culture, which may include its ideational, behavioral, 

5  For this reason I will use the terms ‘cultural transmission theory’ and ‘cultural evolutionary theory’ 
as synonyms. 
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and material aspects, have the properties of the universal or general Darwin-
ian evolutionary system (Mesoudi et al. 2006; Mesoudi 2015; Lycett 2015a; 
Mesoudi et al. 2004) – that “similarity in behavior and artifacts may be caused 
by the exchange of information using a nongenetic mechanism” (Eerkens & 
Lipo 2007: 240). This means that some cultural phenomena can be modeled 
as population-level phenomena, and that the system is characterized by the 
current frequency distribution of variants, if the variants are conceptualized as 
discrete units, or by the probability (density) distribution of possible cultural 
states, if they are continuous. The basic process is the transmission of cultural 
information via social learning between the members of the population, with 
the possibility of modification by copying error or intentional invention. The 
evolutionary change is the change in the frequency or probability density as-
sociated with cultural variants. The differential transmission of information 
that results in frequency change may come from the stochasticity of the trans-
mission process itself (the neutral evolution and drift), or can be caused by 
other factors that increase or decrease the probability of the particular cultural 
information being transmitted to another person or object (selection). 

It should be noted that this is a completely different paradigm of cultural evo-
lution compared to what is usually considered as evolutionism in anthropology 
(Palavestra & Porčić 2008; Dunnell 1980). In social and cultural anthropology, 
the terms “evolutionism” and “sociocultural evolution” are usually associ-
ated with the classic sociocultural evolutionism of the 19th century, estab-
lished by Edward Tylor, Henry Morgan and Herbert Spencer, and its updated 
version, the neoevolutionism of the mid-20th century championed by Leslie 
White, Julian Steward, Elman Service, and Marshall Sahlins. In these theories 
the term “sociocultural evolution” can be replaced with the term “sociocul-
tural change” without a loss in meaning, as the structure of these theories 
does not have anything to do with the structure of Darwinian evolutionary 
theory (Dunnell 1980). Both 19th century evolutionists and neoevolutionists 
were concerned with changes in the scale and organization of human societies. 
The neoevolutionists were particularly concerned with defining the forms of 
human organization which would reflect specific evolution, as an adaptation 
to a particular ecological niche, and general evolution, which would reflect the 
scale and social complexity (hence the categories such as band, tribe, chiefdom 
and state) (Sahlins & Service 1960). The most important questions revolved 
around how one organizational type transformed into the other, and particu-
larly how social complexity increased. These transformations can indeed be 
thought of as macroevolutionary changes in the Darwinian framework, but the 
units and processes employed by the sociocultural evolutionists had nothing 
to do epistemically with a theory of Darwinian evolution, as the mechanisms 
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of change did not involve population thinking and descent with modification 
(Dunnell 1980). Evolutionary change was understood as the holistic transfor-
mation of an entire cultural system caused or mediated by external or internal 
factors such as climate, population pressure, intensity of warfare, etc.

In biology, the basic unit of transmission is well known. Hereditary informa-
tion is carried by a gene which consists of the sequence of three nucleotides (in 
the case of protein-encoding genes), the building blocks of the DNA molecule. 
But what about cultural transmission? Richard Dawkins famously coined the 
term meme as the cultural equivalent of a gene:

“Examples of memes are tunes, ideas, catch-phrases, clothes fashions, ways of 
making pots or of building arches. Just as genes propagate themselves in the gene 
pool by leaping from body to body via sperms or eggs, so memes propagate them-
selves in the meme pool by leaping from brain to brain via a process which, in the 
broad sense, can be called imitation. If a scientist hears, or reads about, a good 
idea, he passes it on to his colleagues and students. He mentions it in his articles 
and his lectures. If the idea catches on, it can be said to propagate itself, spreading 
from brain to brain.” 

(Dawkins 1976: 206)

A similar concept, the culturgen, was introduced by Lumsden and Wilson (1981). 

Unlike for genes, there is no consensus on whether memes should be used as 
a metaphor for the cultural information transmitted by any means and at any 
level of complexity, or whether we should try to define them physically e.g. as 
“self-replicating brain structures, actual patterns of neuronal wiring-up that 
reconstitute themselves in one brain after another” (Dawkins 2006: 323). In 
this book, I will use the word ‘meme’ as a synonym for a cultural trait or cul-
tural variant, without subscribing to any particular interpretation of its nature 
and scale.

Another important issue is copying-fidelity and the question of whether 
memes are particulate units of inheritance:

“This brings me to the third general quality of successful replicators: copying-fi-
delity. Here I must admit that I am on shaky ground. At first sight it looks as if 
memes are not high fidelity replicators at all. Every time a scientist hears an idea 
and passes it on to somebody else, he is likely to change it somewhat. I have made 
no secret of my debt in this book to the ideas of R. L. Trivers. Yet I have not repeated 
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them in his own words. I have twisted them round for my own purposes, changing 
the emphasis, blending them with ideas of my own and of other people. The memes 
are being passed on to you in altered form. This looks quite unlike the particulate, 
all-or-none quality of gene transmission. It looks as though meme transmission is 
subject to continuous mutation, and also to blending.”

(Dawkins 1976: 209)

However, the issue of discreteness and absolute fidelity are not fundamen-
tal for the theory to work. It has been shown that discrete models are useful 
even if the mental representations being transmitted are not discrete gene-
like replicators; and cultural transmission does not involve the accurate rep-
lication of discrete memes (Henrich et al. 2008; Mesoudi et al. 2004). This 
is because some meme states are more probable than others, since they are 
easier to think – these are the cognitive attractors which reduce the variation 
of the meme representations by concentrating them around a smaller number 
of values:

“Instead of a continuum of cultural variants, most people will hold a representa-
tion near an attractor. If there is only one attractor, it will dominate. However, if, 
as seems likely in most cases, attractors are many, other selective forces will then 
act to increase the frequency of people holding a representation near one attractor 
over others. Under such conditions, even weak selective forces (“weak” relative to 
the strength of the attractors) can determine the final distribution of representa-
tions in the population.”

(Henrich et al. 2008: 121)

The concept of cultural attraction is the corner stone of another major evo-
lutionary theory of cultural transmission – the cultural attraction theory, also 
known as cultural epidemiology (Morin 2016; Sperber 1996; Claidière & Sper-
ber 2007). Cultural attraction theory envisions the transmission process as 
a reconstruction and biased transformation of cultural representations (i.e. 
cultural variants, or meme variants), rather than the simple differential repli-
cation of memes. The crucial thesis of cultural attraction theory is that the way 
in which mental representations are transformed will usually not be random 
but biased towards cultural attractors. Cultural attractors are cultural vari-
ants which are, for some reason, cognitive or ecological, more probable trans-
formation outcomes than other. The factors of attraction are not exclusively 
cognitive and psychological, but can be ecological i.e. external to the mind 
(Scott-Phillips et al. 2018; Acerbi & Mesoudi 2015; Claidiere et al, 2014). As 
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Mesoudi (2021) has noted, there is no fundamental contradiction between the 
cultural selection and biased transformations positions on cultural evolution 
– both kinds of dynamics may be present with different weights in different 
domains of culture.

In this book I do not explore the implications of cultural attraction theory, but 
focus on the ‘standard’ cultural transmission theory of Boyd and Richerson. 
The main reason for such a decision is pragmatic, and contingent upon the 
history of the evolutionary approach in archaeology. The models of standard 
cultural transmission theory are more developed and they have been more 
widely used in archaeology in comparison to cultural attraction theory. This 
does not mean that cultural attraction theory has no relevance for archaeology. 
On the contrary, the potential of this theory is underutilized in archaeology, 
and may turn out to be crucial for understanding copying errors and innova-
tion related to material culture (see Crema et al. 2023). This issue is briefly 
discussed in the final chapter of the book. 

2.2.2.  The properties of cultural transmission

The conceptualization of the cultural transmission process as the evolution-
ary process had profound implications for the structure and potential of the 
theory, because it enabled the use and modification of the long established 
quantitative models from the population genetics (Boyd & Richerson 1985; 
McElreath & Boyd 2007; Cavalli-Sforza & Feldman 1981). Unlike previous cul-
tural transmission theories, the evolutionary cultural transmission theory has 
an epistemic advantage of being a quantitative theory. The theory of cultural 
transmission thus consists of quantitative models specifically constructed to 
capture the variety of cultural processes which may generate a change in the 
frequencies of cultural elements at the population level.

The study of cultural evolutionary systems requires the construction of a new 
theory and models based on the modifications of the original biological evolu-
tionary theory. This is because cultural evolution has properties for which no 
analogues exist in biological evolution. When it comes to the pathway of trans-
mission, cultural transmission is not limited only to parent-offspring trans-
mission of cultural information (vertical transmission), but may occur between 
members of any generation regardless of biological relatedness (Cavalli-Sforza 
& Feldman 1981). If it occurs between members of the same generation it is 
horizontal transmission, whereas if it occurs between unrelated members of 
older and younger generations, it is called oblique transmission (Cavalli-Sforza 
& Feldman 1981). Usually, the direction of the transmission is from the older 
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to the younger generation, but in principle there is nothing to prevent cultural 
transmission from going the other way round, although this may be quite rare. 
In addition to the one-to-one (asexual reproduction) or two-to-one (sexual 
reproduction) relations present in the biological inheritance, in the cultural 
case, the transmission can be one-to-many or many-to-one.

In cultural evolution theory, the transmission of memes occurs by means 
of social learning. There are several mechanisms of social learning. Hoppit 
and Laland (2013: Chapters 2 and 4) provide a classification of social learn-
ing mechanisms, which includes a list of twelve social learning mechanisms; 
but it should be noted that there is no universal classification upon which all 
of the researchers in the field of social learning will agree (cf. Rendell et al. 
2011). So, the details of each classification attempt are open to debate. The dis-
tinction between social learning mechanisms is conceptually useful, although 
in practice the situation is usually complex and the boundaries between the 
mechanisms may be blurred, or the mechanisms may be difficult to identify 
(Hoppitt and Laland 2013, see also Singh et al. 2021). In a review of cultur-
al evolutionary approaches in archaeology, Lycett offered a taxonomy which 
includes four general mechanisms: stimulus enhancement, emulation, imita-
tion, and teaching (Lycett 2015a). Stimulus enhancement is perhaps the least 
relevant for most modern human situations, as it is a kind of indirect learning 
where no actual copying takes place – the learning is social simply because 
one individual influences the behavior of another individual by exposing the 
other individual to the context (directing the attention) which amplifies the 
probability of a certain behavior being acquired. Emulation is when one indi-
vidual tries to copy the end result of the behavior of another individual (e.g. to 
make the same artifact), without observing the sequence of steps that lead to 
that end result. Imitation is the kind of social learning when the student tries 
to reproduce each action of the role model in the sequence; whereas teaching 
assumes the active role of the model i.e. explicit instructions for how to do 
something. The distinction between the mechanisms of social learning can 
have important implications, especially in archaeology, where the degree of 
copying error and the generation of mutations may depend on the kind of 
social learning mechanism – copying error is greater in the case of emulation 
than imitation (Schillinger et al. 2015). 

2.2.3.  Models of cultural transmission

The second important difference between biological and cultural evolution con-
cerns the evolutionary forces, the specific biases that may increase or decrease 
the probability of transmission for the different variants. The evolutionary 
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forces that cause the differential transmission of variants are more diverse 
and complex in cultural evolution compared to the biological evolution. For 
this reason, the existing models from population genetics had to be modified 
and new models had to be formulated (Boyd & Richerson 1985). These models 
of transmission form the core of cultural evolution theory. 

Just as in biological evolution, neutral evolution and natural selection are also 
present in cultural evolution. Neutral evolution is captured by the unbiased or 
neutral model of cultural transmission. In the unbiased model, it is assumed 
that the probability of replication of each variant of a meme (e.g. painted pot-
tery ornament) is proportional to its current frequency in the population. In 
finite populations, the sampling effects would slightly increase the proportion 
of some variants over others in one generation, and the cumulative effect of 
these small stochastic deviations would lead to the differential replication of 
meme variants, even if all meme variants have the same adaptive value. The 
smaller the population, the stronger the effect of differential replication – this 
is the drift. It is important to stress that even though meme frequencies are 
changing in such a way that some variants become numerous while others 
decrease in frequency and disappear, there is no selection, as all meme vari-
ants have the same adaptive value. The frequencies are changing only due to 
chance. Imagine that we start with a finite population of size N, where the fre-
quencies of four meme variants are uniformly distributed. In time step zero, 
the relative frequencies of all variants are the same. In the next time step, 
the frequency of one of the variants increases by one unit, and the frequen-
cy of one of the remaining three decreases by one unit simply by chance (as 
the sampled frequencies are never exactly equal to the theoretical frequencies, 
especially in small samples). This changes the probabilities of replication for 
the meme variants in the next episode of transmission. Now the variant whose 
probability of replication has increased slightly by chance has a slightly great-
er probability of being transmitted in the next iteration of the transmission 
process. The cumulative effect will be the increase of frequency of some vari-
ants at the expense of others, which in the absence of the introduction of new 
variants into the system (mutations or inventions) would lead to the fixation 
of a single variant in the population. 

What would be the anthropological rationale for such a model? How could hu-
man behavior possibly be modeled as a random process of copying? Why would 
anyone decide which hairstyle to choose based on the random number genera-
tor, with hairstyles weighed by their current frequency distribution in the pop-
ulation? For example, Leroi et al. (2020) criticize the conclusions of Hahn et al. 
(2003) and Bentley et al. (2004) that the neutral model is a good explanation 
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for the frequencies of first names in the USA in the following manner. They 
argue that if American parents choose first names for their children randomly 
(i.e. in proportion to their relative abundances), then many Christians would 
end up naming their children with typical Muslim names, which is obviously 
absurd and, in their view, disqualifies the neutral model as a reasonable expla-
nation for the frequency distribution of first names. But this criticism misses 
the point of the neutral model. It is important to realize that models are not 
reality, but simplified representations of reality. The anthropological inter-
pretation of the neutral or unbiased model of cultural evolution is that each 
individual has idiosyncratic reasons for choosing a particular meme variant 
over another, but the net result of these multiple decisions made by different 
members of the population is such that it is as if they were chosen randomly, 
with the sampling probability of each variant being equal to its current relative 
frequency in the population (Shennan 2011). Therefore, in this model, each 
individual decision is a black box, but their cumulative net effect is such that 
the transmission is driven by the current relative frequencies of the variants. 
This captures the assumption that each meme variant has the same adaptive 
value and that there is no systematic or inherent preference for one variant 
over another. In the example with first names, as Bentley et al. (2021) note, the 
issue of scale is important – at the scale of the entire USA the neutral model is 
a good model. It does not mean that people are randomly choosing names for 
their children, only that, at a given scale, the resulting patterns are as if they 
were doing so. Therefore, the neutral model is a representation of reality at a 
certain scale – it does not model motivation for individual decisions but the 
aggregate outcome of a large number of individual decisions. It is best seen as 
a theoretical tool, as it is robust in the sense that it can approximate the com-
plex reality of many competing non-neutral processes in the world (Bentley 
et al. 2021). As will be discussed soon and showcased throughout the book, the 
neutral model is a very important, if not the most important model of cultural 
transmission in archaeology. 

Classic natural selection may also be an evolutionary force in cultural evolu-
tion. If a certain meme is vertically transmitted and increases the probability 
of biological reproduction, the frequency of such a meme will increase through 
time, as the ones who carry it will have more children than the ones who do 
not, and the children of the meme-bearers will also carry that meme due to 
vertical cultural transmission. The adoption and spread of farming is an ex-
cellent example of natural selection acting on memes (Shennan 2002: 53). The 
acceptance or non-acceptance of farming can be thought of as two cultural 
traits or memes (or meme complexes). The farming economy enables people 
to have higher fertility i.e. more children who will themselves also become 
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farmers owing to social learning from their parents. The net result will be the 
increase of the farming population compared to the non-farmers, “outcom-
peting them in classic natural selection terms” (Shennan 2002: 53). In this 
way, the meme for farming is naturally selected. 

In addition to drift and natural selection, which are the main forces of bio-
logical evolution, the specifics of cultural evolution give rise to new forces, 
for which new models have been formulated (Lycett 2015a; Richerson & Boyd 
2005; Henrich & McElreath 2003). I will use a simplified version of the Rendell 
et al. (2011) taxonomy for the classification and presentation of the most im-
portant cultural transmission models (Figure 2.1).

In cultural transmission there are numerous biases which increase or decrease 
the probability for a particular meme to be replicated, and models have been 
formulated to capture the essence of these processes. The most general line of 
division is between content biases and context biases (Lycett 2015a). A content 
bias will be present if a particular meme variant has a real or perceived (dis)
advantage over other cultural variants, or if it is cognitively preferred/repel-
lent for some reason. For example, metal axes may be preferred over stone 
axes due to their greater efficiency (Henrich & McElreath 2003), and a story 
about a celebrity’s love life (or any other gossip) is more likely to be retold 
than a story about what someone bought in a regular visit to a supermarket. 
Content biases result in cultural selection in the strict sense, as the content of 
the cultural information influences its probability of being replicated. 

In the case of context biases, the probability of replication for a particular 
meme is not influenced by its contents but by the various contextual aspects. 
Context biases can be divided into frequency-dependent biases and mod-
el-based biases. The frequency-dependent biases arise when the probability of 
replication of a meme depends on its relative frequency in the population. The 
frequency-dependent biases can be further subdivided into conformity and 
rarity (anti-conformity) biases. The conformist model of transmission assumes 
that people will tend to conform – that they will choose more often than by 
chance to copy the most frequent meme in the population. The anticonformist 
model based on rarity bias assumes exactly the opposite – that people will 
tend to copy the least numerous (which is often the novel) meme variants in 
the population. I have singled out the conformist and anti-conformist models 
as the most popular models in archaeology, but it should be emphasized that 
other frequency dependent models are possible (see Rendell et al. 2011 for a 
more detailed list of frequency-dependent biases).
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The model-based biases give rise to a class of cultural transmission models 
where the probability of copying of a cultural variant depends on which person 
or group possesses the variant. This category can also be subdivided. Prestige 
bias means that people will tend to copy preferentially the memes associated 
with individuals and groups (or artifacts, see Lycett 2015a) who are for some 
reason considered to be prestigious, whereas success bias assumes that peo-
ple will try to imitate the most successful person in some field. These biases 
are sometimes labeled as indirect biases, because people are usually copying 
traits or behaviors which have nothing to do with the actual reasons for the 
success (e.g. one may have the same hair-style or the same tattoo as a famous 
musician or sports player, but this has no real impact on the person’s sport 
or musical skill). The similarity bias is another category of model-based biases 
– when this kind of bias is present, people tend to preferentially copy cultural 
information from the individuals who are more similar to themselves. The 
Axelrod model is an example of cultural transmission model with similarity 
bias (Axelrod 1997). Other criteria for the choice of models are also possible, 
such as age (e.g. copying traits in older people) or religious or professional 
affiliations.

A model which also needs to be mentioned is Boyd and Richerson’s (1985) 
guided variation model. In this model, there is no bias in the transmission pro-
cess but in the process of mutation. In this model, the mutation is not random, 
as in biological evolution, but it is directed towards certain culturally preferred 
values. Individuals modify the cultural variants they have copied towards some 
culturally preferred standard, and then the resulting distribution of memes is 
used as a basis for the next episode of unbiased transmission. The guided vari-
ation model of Boyd and Richerson partially resembles the ideas of the cultural 
attraction theory, although the transformation towards the attractor in this 
model occurs only within the mutation event, it is not an integral part of the 
transmission process. 
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2.3.  CULTURAL TRANSMISSION THEORY IN 
ARCHAEOLOGY

2.3.1.  Darwinian evolution in archaeology

Even though the application of evolutionary cultural transmission theory in 
archaeology is a relatively recent phenomenon, some of the key concepts and 
ideas can be traced at least to the late 1960s and 1970s. Many of the ideas 
presented in David Clarke’s Analytical Archaeology (Clarke 1978) closely resem-
ble modern cultural transmission theory, as Clarke envisioned the patterns 
in the archeological record as reflecting the flow of cultural information at 
the population level through time at different scales (Lycett & Shennan 2018; 
O’Brien & Lyman 2000: 261-265). He formulated a taxonomy of observational 
scales and relevant processes associated with each scale, as well as methods 
for their quantification and analysis. The only component that was missing 
was an explicit reliance on Darwinian evolutionary theory, although it was 
heavily implied in Clarke’s ideas (Lycett & Shennan 2018; O’Brien & Lyman 
2000: 261-262). 

Robert Dunnell explicitly advocated the application of Darwinian evolutionary 
theory in the interpretation of the archaeological record (Dunnell 1978; 1980; 
Dunnell 1989). Dunnell proposed a completely different concept of style – one 
which was explicitly defined in terms of the evolutionary process. In Dun-
nell’s scheme, the variation is defined as stylistic if it is not selected in any 
way, which means that no variant has an adaptive (functional) advantage over 
another6. Therefore, Dunnell (1978) suggests that stylistic traits can best be 
accommodated by stochastic processes, as they exhibit random behavior. In 
terms of cultural transmission theory, the model of unbiased transmission 
comes to mind first as a candidate for modeling style, but other models, such 
as conformist or anti-conformist transmission, are also potential candidates, 
as long as the features being transmitted are not functional in the sense that 
they affect the physical or symbolic performance of the object.

The evolutionary approach to archaeology was advocated by various research-
ers during the 80s and the 90s (e.g. O’Brien & Holland 1990; Leonard & Jones 
1987; Teltser 1995b; Rindos et al. 1985). However, there were few empirical 
applications, as most publications were programmatic statements. It was not 
entirely clear how to perform empirical research in this theoretical framework. 

6  As O’Brien and Lyman noted, this idea was not new, as Kroeber and Binford also viewed style as 
selectively neutral and therefore a result of a stochastic process of transmission; but neither of them 
pursued the theoretical and methodological implications of this insight (O’Brien and Lyman 2000: 
265-266).
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Moreover, the proposed approaches were only loosely or not at all connected to 
the cultural transmission models developed within the dual-inheritance the-
ory of Boyd and Richerson.

2.3.2.  Neiman’s breakthrough and beyond

The major breakthrough in the development and application of cultural trans-
mission theory came with the work of Fraser Neiman and his seminal paper 
“Stylistic Variation in Evolutionary Perspective: Inferences from Decorative 
Diversity and Interassemblage Distance in Illinois Woodland Ceramic Assem-
blages” (Neiman 1995). In the theoretical section of the paper, Neiman adapt-
ed the population genetics mathematical theory to model the cultural trans-
mission of material culture. He used computer simulation to show that the 
neutral (unbiased) model of cultural transmission produces specific patterns 
of change in the relative frequency of cultural variants in time. These patterns 
resembled the patterns of temporal dynamics of the relative frequency of types 
that are often encountered by archaeologists for various classes of artifacts. 
When the assemblages are ordered in the true chronological sequence (e.g. by 
means of stratigraphy or absolute dating), the relative frequencies of each type 
usually behave in accord with the unimodal trend – the relative frequencies of 
an initially rare type may increase, reach some maximum relative frequency 
and then start to slowly decrease towards disappearance. This empirically es-
tablished pattern was the basis for the seriation method of reconstructing the 
relative chronological sequence of assemblages – assemblages with unknown 
stratigraphic relations and unknown absolute chronology should be ordered 
in such a way that the relative frequencies of types conform as much as pos-
sible to the aforementioned trend (O’Brien & Lyman 1999). What Neiman did 
was to show that evolutionary cultural transmission theory was able to ex-
plain the temporal variability of material culture. Such a result was anticipat-
ed by Dunnell (Dunnell 1978; Dunnell 1989) and Teltser (Teltser 1995a), who 
suggested that stylistic variability was a result of neutral evolution. Neiman 
demonstrated this explicitly – by showing that the implication of the theory 
concerning the temporal dynamics of type frequency is consistent with the 
empirical evidence. Before Neiman’s work, the fact that seriation works, i.e. 
that the relative frequencies of types have approximately unimodal distribu-
tions in time, was explained by invoking the principle of popularity – some 
variants were more popular than other at different times (O’Brien & Lyman 
1999). The problem with this explanation is that it does not actually explain 
why the frequencies change the way they do – it just rephrases the problem 
into more intuitive terms (‘popularity’) and leaves it where it is. Neiman, on 
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the other hand, managed to show that such a pattern of frequency change is 
predicted by the neutral model of cultural transmission. 

In the continuation of his paper, Neiman adapted the mathematical theory 
of neutral biological evolution to make connections between the parameters 
of cultural transmission, such as population size and mutation rate, with the 
archaeologically observable and measurable traits, such as assemblage diver-
sity and inter-assemblage distances7. The diversity of an assemblage sensu lato 
(i.e. its variability) can be measured in two ways. One way is to simply count 
the number of variants which are present (e.g. the number of vessel types 
represented by at least one specimen) in the assemblage. This count is called 
the richness of an assemblage. The other way is to combine the information 
on richness with information about the distribution of relative frequencies of 
variants. This is diversity sensu stricto.

Using a very simple and elegant mathematical model, Neiman showed that 
under neutral transmission, the cultural diversity8 of a population at equilib-
rium is approximately equal to:

2Neμ + 1  (Eq. 2.1)

Where Ne is the effective population size9 and μ is the mutation rate. The mu-
tation rate is the probability that an agent will introduce a novel cultural var-
iant (e.g. type) to the system, instead of copying from the existing pool of 
variants. The product 2Nμ is usually referred to as the theta (θ) parameter. This 
equation is telling us that the diversity of types in an assemblage, if the under-
lying process of transmission is neutral, will be proportional to the population 

7  Euclidean distance between a pair of assemblages is based on the relative frequencies of types in each 
assemblage. Each assemblage is represented by a vector, with the number of elements equal to the 
total number of types present in all assemblages under study. The vector element entry for each type 
is equal to the relative frequency of that type in a particular assemblage. Therefore, the relative fre-
quencies of types in an assemblage represent the coordinates of an assemblage in multidimensional 
space, with the number of dimensions equal to the total number of types present in assemblages 
under study. The distance between two assemblages is then calculated as a simple Euclidean distance 
based on the assemblage coordinates.

8  In this context, the diversity refers to the reciprocal value of homogeneity of a population – it is a 
theoretical construct. Homogeneity is defined as the “probability that two randomly chosen indi-
viduals in the population carry variants that are copies of a common antecedent variant” (Neiman 
1995: 12).

9  Effective population size is not the same as census population size (the number of individuals in a 
population). It is a theoretical concept from population genetics, which reflects the population size of 
an idealized population (constant population size, evolution driven by random drift, random mating, 
non-overlapping generations), that corresponds to a real population with the same genetic diversity. 
In order to apply the theoretical results where effective population size is a relevant parameter, it is 
assumed that the census and effective population sizes are correlated; but this may not always be 
the case, as the relationship between census population size and effective population size is complex 
(Premo 2016). 
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size and the mutation rate. The important thing is that the theta parameter 
can be empirically estimated from the relative frequencies of types (diversity 
sensu stricto) or by using the information on assemblage richness (see below). 
Neiman used this important theoretical result to argue that changes in as-
semblage diversity are monitoring changes in the components of the theta 
parameter. 

How does Neiman interpret the changes in the theta parameter? The assem-
blage diversity will increase or decrease depending on how the components 
of the theta parameter, the population size and the mutation rate, change 
through time.

“Recall that θ is twice the product of the effective population size (Ne) and the 
innovation rate (μ), where the latter includes the combined effects of both in situ 
innovation (ν) and the introduction of novel variants from other groups (m). If m 
= ν + μ, then Ne μ = Ne ν + Ne m. Now, it seems reasonable to suppose ν, the proba-
bility that a group member will introduce a novel variant into their own group in 
each time period, is roughly constant across demes (e.g., Dunnell 1978: 197; Leone 
1968:1150). On the other hand, m, the probability that an individual in a given 
group learns from a member of another deme, is likely to be more variable in time 
and space. Under these circumstances, most of the variation in θ with the param-
eter μ will be caused by variation in intergroup transmission rates. In addition, we 
can expect θ to be independently affected by variation in Ne. Variation in θ, derived 
from either or both of these sources, implies variation in the absolute number of 
intergroup transmission episodes per unit time (Nem), that is, the number of times 
local group members learn from members of other groups. Variation in θ is a con-
servative measure of intergroup transmission levels, because a proportion of donor 
group members carry variants that already exist in the recipient group as a result 
of transmission into it in previous time periods.” 

(Neiman 1995: 17-18)

Therefore, Neiman uses theta estimates, based on assemblage richness (di-
versity sensu lato), as a proxy for measuring the degree of intergroup inter-
action, as the mutation rate is modeled as consisting of two components. The 
first component is the probability of introducing a completely novel variant 
(by copying error or deliberate innovation), and the second component is the 
probability of introducing a novel variant by copying from another commu-
nity. Having established this result by deriving it from cultural transmission 
theory, Neiman goes on to use it to investigate empirically the changes in in-
tercommunity interaction through time in the Illinois Woodland period. 
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After Neiman’s work, there was a steep increase of archaeological studies 
based on cultural transmission theory, with several major theoretical and 
methodological publications appearing almost at the same time (Shennan 
2002; Lipo 2001; O’Brien & Lyman 2000; O’Brien & Lyman 2003). Shennan 
and Wilkinson (Shennan & Wilkinson 2001) and Lipo (2001) advanced the state 
of the art considerably by building upon Neiman’s key theoretical result that 
relates the neutral model and the typological diversity of assemblages. Neiman 
(1995) presented two possible ways of estimating the theta parameter for the 
assemblage:

1)  theta can be estimated from the relative frequencies of variants (i.e. from 
diversity sensu stricto) using the following formula (Neiman 1995:14, Eq. 7):
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where pi is the proportion of the i-th type or variant in the assemblage.

2)  given the observed sample size (N) and richness (k), defined as the number 
of different variants in the assemblage, the theory implies (Ewens 1972) 
that if the sampled assemblage is the result of a neutral process, the un-
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solving the following equation for theta (Neiman 1995:16, Eq. 9):
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where E[k] is the expected richness10, and N is the observed sample size. Nei-
man labeled this estimate of theta as te (Neiman 1995). 

Shennan and Wilkinson (2001) argued that the magnitude of difference be-
tween the two theta estimates can be used as a test criterion for the null hy-
pothesis that the frequency of variants in archaeological assemblages changed 

10  In practice, the observed richness k is used as the E[k] in the formula to numerically estimate theta.
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in accordance with the expectations of the neutral model11. The tf is a purely 
empirical estimate of theta as it is calculated from the frequencies of types in 
an assemblage, and does not depend on assumptions about the generating 
process. Shennan and Wilkinson suggested that, on the other hand, the te es-
timate can be interpreted as the theta value expected for an assemblage of a 
given size and a given richness, if the underlying generating process was neu-
tral transmission. The implication is that the difference between tf and te is the 
measure of the divergence from the neutral model (Shennan and Wilkinson 
2001). The neutral model was set as a baseline model, a null hypothesis to be 
tested against the data. If the tf is equal to the te, then the neutral model is a 
good explanation for the data. If the tf estimate is higher than the te estimate, 
this indicates that the anticonformist transmission model better fits the data 
than the neutral model. If the tf estimate is lower than the te estimate, this 
indicates the conformist model of transmission as the assemblage generating 
process. 

The neutrality tests provided means to empirically evaluate different hypoth-
eses about the nature of the social and cultural processes standing behind the 
formal variation of material culture in time and space (Lipo & Madsen 2001), 
and it is no wonder that many other researchers were quick to follow this path 
(Kohler et al. 2004; Steele et al. 2010). As the research accumulated, it became 
clear that there were many problems that needed to be solved, such as time 
averaging, equifinality, equilibrium assumptions etc., but the field remained 
vibrant, with the researchers constantly trying to improve the method by ex-
ploring the potential problems and offering novel solutions (Madsen 2012; 
Premo 2014; Premo & Scholnick 2011; Porčić 2015; Kandler & Shennan 2013; 
Kandler & Crema 2019; Crema et al. 2016; Crema et al. 2014a; Bentley et al. 
2004; Gjesfjeld et al. 2020; Madsen 2020; O’Dwyer & Kandler 2017). The gen-
eral problem that these studies aimed to solve is best summarized by Stephen 
Shennan:

“The question then becomes, to what extent is it possible to identify the action of 
the various cultural evolutionary processes outlined above on the basis of distri-
butions of through-time variation in the past, given the often poor temporal res-
olution of the archaeological record and the enormous range of complex processes 
that have affected it? This is a classic ‘inverse problem’ of a type very familiar to ar-
chaeologists: inferring the microscale processes producing a pattern from the pat-
tern itself, as opposed to carrying out designed experiments or making naturalistic 

11  I will only describe the method by Shennan and Wilkinson (2001) as it is more widely known and it 
is conceptually simpler to present, whereas it should be noted that, at the same time, Lipo (2001) 
developed his own version of the neutrality test which builds upon the method published in Ewens 
(1972).
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observations of processes in the field and examining their consequences. The prob-
lems are analogous to those faced by population geneticists in identifying the op-
eration of selection and other processes given the evidence of gene distributions, 
but in that case the problems are less complex, the amounts of data available are 
now enormous and very powerful methods have been developed with a strong and 
well-justified theoretical background. However, as with the development of the 
theoretical models that created the basis for the field of cultural evolution, the ex-
istence of these methods is something from which empirical cultural evolutionary 
studies can benefit.”

(Shennan 2011: 1078)

Another important line of research that has arisen from the conceptualization 
of culture as an evolutionary process is cultural phylogenetics – the application 
of the theory and methods from the biological fields of cladistics (Kitching et 
al. 1998) and comparative phylogenetic analysis (Harvey & Pagel 1991; Felsen-
stein 1985) to (material) culture (O’Brien & Lyman 2003; Lipo et al. 2005; 
Straffon 2016; 2019; Borgerhoff Mulder 2001; Mace et al. 1994). Cultural phy-
logenetic methods are used to study cultural macroevolutionary patterns such 
as the distribution of cultural elements in space. The essence of this research 
is to test evolutionary hypotheses about culture, usually to see if different as-
pects of culture conform to the tree-like model of evolution, and if they do, to 
reconstruct the cultural phylogenies – the relations between cultural entities 
in terms of their evolutionary (transmission) history, as represented by the 
tree showing the branching of clades from common ancestors. The key for 
reconstructing cultural phylogenies is the identification of homologies. Ho-
mology is a cultural element shared between two or more cultural entities due 
to their shared cultural ancestry. When it comes to the application of the phy-
logenetic method in archaeology, it should be emphasized that the assumption 
of the tree-like structure is not simply assumed, but empirically tested in each 
case. Moreover, it has been shown that the strength of the phylogenetic signal 
in cultural data confirms it to be as strong as the strength of the signal in the 
biological data (Collard et al. 2006). The study by Collard et al. (2006) is indeed 
an impressive demonstration of the relevance of evolutionary transmission 
theory to the cultural realm. 

In addition to using cladistics to look for phylogenetic signals and to re-
construct phylogenetic relationships between cultural entities, comparative 
phylogenetic methods are also applied in anthropological and archaeologi-
cal research (Mace & Pagel 1994; Borgerhoff Mulder 2001). For example, the 
phylogenetic independent contrasts (Mace & Pagel 1994) represent a potential 
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solution to one of the fundamental problems in comparative anthropological 
research – Galton’s problem. Galton’s problem refers to the problem of apply-
ing standard statistical tests to cross-cultural data, as the observations may 
not be independent due to shared cultural ancestry or cultural diffusion (Mace 
& Pagel 1994). Comparative phylogenetic methods can and have been used to 
include the information on historical and genetic information, in order to test 
cross-cultural hypotheses.

To conclude this short review (for comprehensive and detailed reviews see 
Marwick 2005; Lycett 2015a; Walsh et al. 2019; Shennan 2008; 2011; García 
Rivero 2016; Straffon 2019), cultural transmission theory in archaeology be-
came the basis for an entire line of diverse and productive research, thus pro-
moting evolutionary archaeology to the ranks of major schools of archaeo-
logical thought. It does not mean that this kind of approach is a theoretical 
panacea; but when it comes to the fundamental problems of traditional ar-
chaeological research, cultural transmission theory offers more than previous 
approaches. 

2.4.  THE EPISTEMOLOGICAL PERSPECTIVE

2.4.1.  The levels and kinds of theory in anthropology and archaeology

What is the relationship between cultural transmission theory, anthropology 
and archaeology from the epistemological perspective? Before I try to answer 
this question, I first need to make a short digression and discuss the levels and 
kinds of theory in archaeology and anthropology. There are many opinions on 
this subject, and therefore the selection of concepts and views presented here 
reflects my own preferences and understanding of the matter, rather than a 
consensus in the discipline (there is none). My position in this regard is open-
ly Binfordian, in the sense that I accept the distinction between the two basic 
levels of theory: the middle-range archaeological theory and the general an-
thropological theory (Binford 1977; 1981). Having said that, it is important to 
stress that, in this context, this position is primarily epistemological – it does 
not assume the primacy of any particular brand of archaeological or anthro-
pological theory. But let us start with the relationship between anthropology 
and archaeology.
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Anthropology is the science12 of culture. The general aim of anthropology to 
provide a systematic description and rational explanations (theory) for the 
emergence and diversity of human cultures is what makes it a universally val-
uable enterprise, the intellectual equal to other sciences, social or natural. In 
the North American tradition of scholarship, archaeology is a constituent part 
of anthropology, as one of its four fields. In Europe, archaeology is usual-
ly taught and practiced as an independent discipline. But I assume that no 
one would deny the fundamental theoretical and epistemological connections 
between archaeology and anthropology. The science of culture can never be 
complete without its attempting to explain the origins of culture and its de-
velopment through time. The theories and hypotheses about major anthropo-
logical phenomena such as social inequality, social complexity, technological 
development, the origins of agriculture, human-environment interactions, 
social institutions, ideologies, the evolution of Homo sapiens and the life-his-
tory traits of our species, usually contain the dynamic aspects i.e. the temporal 
change in key variables. The only way to estimate the values on the relevant 
variables for the largest part of the human past, and to enable the testing of 
anthropological theories and hypotheses about human culture, is by using the 
methods of archaeology. 

But archaeology is much more than just a substitute for history and the eth-
nography of the past. As a matter of fact, in most cases, archaeology cannot 
produce ethnographic-like descriptions of the past at all, as it operates with 
evidence that enables insight into processes that operate on different temporal 
and spatial scales than the events and processes recordable by ethnographers 
or historians (Perreault 2019; Shennan 2002: 9). This is both the weakness and 
the strength of archaeology. It is strength when the anthropological theories 
and hypotheses deal with processes and temporal depths that only archaeolo-
gy can tackle. It is a weakness when the anthropological hypothesis or theory 
is expressed at ethnographic time-scale, because archaeology is in most cases 
unable to generate compatible data and information – and in such cases ar-
chaeology will be unable to fulfill its role in anthropological theory-building. 
Traditional culture-historical archaeology fell into this trap in its attempt to 
match anthropological to archaeological phenomena existing at different time 
scales, a point beautifully illustrated by Clarke (1973: 10): “… to interpret the 
French Mousterian sequence, of more than 30,000 years duration, in terms 

12  In time, for better or for worse, anthropology has become more than a science, as the postmodern-
ist impact has opened the anthropological agenda to ethical and political considerations, as well as 
activism and action related to gender issues, minority groups, rights of native peoples, etc. It is not 
my intention to reiterate the arguments of the never-resolved debate as to what anthropology is or 
should be – my perspective is simply focused on the original scientific aspirations of anthropology 
to provide a rational account of the cultural diversity of humans, while acknowledging its complexity 
as a culturally, historically and politically contextualized discipline. 
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of the acrobatic maneuverings of five typological tribes is tantamount to an 
attempt to explain the Vietnam war in terms of electron displacements.” But 
culture-historical archaeology was not concerned with general anthropolog-
ical theory in the first place. The problem of potential non-compatibility be-
came most visible in postprocessual archaeology, where the agenda was set to 
explore exactly those anthropological topics that are not suitable for archaeo-
logical research (most such hypotheses are not testable, because they cannot 
be falsified), such as individual agency, agency of material culture, gender is-
sues, psychology and individual perception, biographies, perceptions of land-
scape, etc. (Shennan 2002: 9). These topics demand ethnographic descriptions 
of the past which are rarely possible.

On the other hand, archaeology depends on anthropology in several ways. In 
the most general sense, anthropology gives meaning to archaeology13. One 
might protest and say that archaeology can be performed not to contribute 
to the needs of anthropology but simply to reconstruct what happened in the 
past, just like traditional history. But this is both a folly and a delusion. It is a 
folly because its contribution to general anthropological theory is what makes 
archaeology a part of the meaningful pursuit of knowledge, a part of the big-
ger picture, rather than just a parochial and exotic pastime which generates 
sets of unrelated trivia about the past. To reject the anthropological perspec-
tive in archaeological research is to deprive archaeology of its most valuable 
intellectual aspect. Likewise, the idea that one can do pure archaeology (or 
history), completely independently of anthropology, is a delusion, because the 
concepts used to structure the observations and inferences are ultimately an-
thropological concepts. The phenomena that we explore are also anthropolog-
ical phenomena, and it is impossible to explain the past without recourse to 
anthropology. One may be unaware of this, but it would be just another case of 
not seeing the woods for the trees. Therefore, archaeology has a double role in 
its relation to anthropology – it contributes to general anthropological knowl-
edge by providing means of testing anthropological theories and hypotheses 
that no other discipline can; but it also depends on anthropology for an obser-
vational and explanatory framework of the past. 

13  This does not imply that other social sciences such as economics and sociology are not important. 
On the contrary, they are very important, in a way similar to that of anthropology – they need ar-
chaeology to test the temporal aspects of their general theories; whilst archaeology borrows models 
and theories from economics and sociology to explain the past. The reason for emphasizing the 
importance of anthropology is because it is holistic, and as such, it incorporates to some degree both 
economics and sociology. Therefore, even though anthropology is practiced as a separate academic 
discipline, i.e. it is separate from economics and sociology (which focus mostly on Western civiliza-
tion and the contemporary world), in the wider picture it encompasses both of these disciplines. In 
this context, I am taking the broadest possible view of anthropology.
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Archaeological theory in the strict sense of the term is a theory that links 
the empirical observations of the archaeological record to the dynamics of the 
past. This is the middle-range theory14, a term famously coined by Binford 
in order to distinguish conceptually archaeological theory sensu stricto from 
general anthropological theory (Binford 1977; 1981; see also Raab & Goodyear 
1984). As noted by Raab and Goodyear (1984), other prominent theorists, such 
as Clarke (1973) and Schiffer (Schiffer 1975; 1976), also recognized the need 
for such a theory. The second kind of theory that we need is one that will tell 
us why things happened in the past the way they did – to explain the past in 
the terms of some general principles. This is general anthropological theory. 

The relationship between general theory and archaeology is two-fold. We can 
invoke general theory to explain a past phenomenon or we can use archae-
ological research to provide means for the testing of general theory. For ex-
ample, the theory of the Agricultural Demographic Transition suggests that 
populations which make a transition from the foraging to the farming way of 
life will have increased fertility and will consequently increase in size (Boc-
quet-Appel 2011). This is a general theory, as it is relevant for any time or 
place. The major test of this theory included a large corpus of archaeological 
data on inferred fertility and the chronology of various prehistoric communi-
ties (Bocquet-Appel 2002; Guerrero et al. 2008; Kohler et al. 2008). Likewise, 
an already established theory, such as the scalar stress theory, can be used to 
explain why the maximum settlement population had to be relatively small in 
non-hierarchical societies (Johnson 1982; Feinman 2011; Alberti 2014); or the 
optimal foraging theory can be used to explain the frequencies of different an-
imals in the faunal assemblages or settlement patterns (Winterhalder & Smith 
2000), and so on.

Middle-range theory and general anthropological theory are the two basic lev-
els and kinds of theory in archaeology. They represent two levels because ar-
chaeological inferences about past events and behavior must logically precede 
the explanation of these events and behavior. These two theories are also dif-
ferent in kind, as they refer to two distinct domains of reality. Archaeological 
middle-range theory deals with translating archaeological observations into 
anthropologically meaningful statements about the past, whereas general an-
thropological theory explains the diversity and processes of anthropological 
phenomena themselves, regardless of whether they come from the past or 
present. It may seem that this discussion and elaboration of different kinds 

14  It should not be confused with the concept of the middle-range theory in sociology, which was pro-
posed by Robert Merton (1968) as an epistemic strategy to formulate a set of independent theories 
and models as explanations for particular social domains which have clear empirical implications 
(Raab and Goodyear 1984). 
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of theories is simply a scholastic exercise; but if we want to understand the 
complex relations of cultural transmission theory and archaeology from the 
epistemological perspective, this categorization is useful and necessary. I will 
argue that cultural transmission theory can have both epistemic roles15. In 
particular cases, it is not always easy or possible to decide in which mode the 
theory is used (as it can be used in both), but we can at least maintain this 
difference at the conceptual level. 

2.4.2.  Cultural transmission theory as a tool for constructing the middle-
range theory

Even though the cultural transmission theory is a general anthropological 
theory, it can be used to formulate the middle-range theory in archaeology 
– to make predictions about what kind of patterns we should expect to find if 
past social processes unfolded in accordance with a specific model of cultural 
transmission:

“The vast majority of CT research in archaeology has revolved around the use of CT 
theory as a means to understand and explain variation and covariation within and 
between assemblages of artifacts or traits of artifacts. Thus, archaeologists meas-
ure patterns in the attributes of artifacts to deduce ancient transmission patterns, 
which are then extrapolated to make claims about the nature of past societies and 
what may have prompted individuals to use one type of transmission system over 
another. For example, societies might be characterized either as employing pri-
marily social learning to transmit information, resulting in higher within-com-
munity conformity, or as encouraging individual learning and experimentation. 
Alternatively, societies might be characterized as using primarily oblique versus 
vertical transmission. While such differences may represent an alternative social 
structure and/or ethos and may be interesting to know in individual prehistoric 
cases, such descriptions are rarely extrapolated to larger interpretive or theoretical 
frameworks. They are used only to explain the archaeological record of a particular 
window of time in space. “

(Eerkens & Lipo 2007: 260)

In this mode, the principles of cultural transmission theory are assumed to 
be true and are used to derive predictions about the archaeological record 
by specifying the connections between cultural processes or structures with 

15  It should be emphasized, however, that the role of cultural transmission theory as archaeological 
theory sensu stricto is incomplete, as it does not include the formation processes of the archaeological 
record.
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the variability of the material culture in space and time. In such cases, we 
are describing past processes in terms of the models and concepts of cultural 
transmission theory. For example, Neiman assumed that the neutral mod-
el is the appropriate model for the transmission of the Woodland ceramics. 
If this model was true, the theory suggests that the assemblages’ homoge-
neity/diversity reflect the degree of intergroup transmission i.e. interactions, 
in terms of the number of people moving between the communities. Neiman 
then empirically investigated whether and how the diversity of assemblages 
changed through time and interpreted these changes in terms of communi-
ty interactions. Cultural transmission theory is used as a justification for the 
proxy which Neiman used, but the ability to monitor the degree of intergroup 
transmission is not the same thing as being able to explain the reasons for the 
changes in interaction frequency. For this particular phenomenon some other 
theory may be relevant.

2.4.3.  Cultural transmission theory as a general anthropological theory 

Cultural transmission theory is a general anthropological theory in the sense 
that it explains or provides a model for certain classes of cultural phenome-
na. Perhaps the most illustrative example of the use of cultural transmission 
theory as a general theory for explaining rather than reconstructing the past 
can be found in the seminal works of Shennan (2001) and Henrich (2004), re-
garding the relationship between the demographic dimensions of preindus-
trial populations and technological complexity. Shennan and Henrich used 
cultural transmission theory to deduce that the development and persistence 
of complex technologies is possible only if the population size is sufficiently 
large to compensate for the lack of perfect replication fidelity. Shennan ar-
gued that this might explain both the development of modern human behavior 
(as reflected in complex technology and symbolic behavior) after and, spo-
radically, before the beginning of the Upper Paleolithic around 45k years ago 
(Shennan 2001). Henrich suggested that the loss of technological complexity 
in Tasmania, when the effective population size was reduced as Tasmania was 
separated from the Australian mainland by the rising ocean level in the early 
Holocene, can be explained by the cultural transmission model of social learn-
ing (Henrich 2001). 

2.4.4.  Archaeology and the testing of cultural transmission theory

When it comes to the use of cultural transmission theory as a source for prox-
ies and for the prediction of patterns in the archaeological record, the key 
question is whether this theory is valid. Is it really true that certain aspects of 
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culture do behave in such a way that they can be modeled as evolutionary sys-
tems? This is the question regarding the validity of cultural transmission the-
ory as a general theory. How do we actually know that the cultural transmis-
sion theory is true? It is one thing to assume that cultural evolutionary models 
are good models for certain aspects of culture and then go on to explore the 
implications of these models under this assumption; but it is a completely dif-
ferent thing at the conceptual level to test this assumption:

“Ultimately, such descriptive studies represent a wholesale and fairly uncritical 
borrowing of ideas from CT rather than attempts to falsify the theory, as science 
should strive to do (e.g., Popper 1959).” 

(Eerkens and Lipo 2007: 260)

Not only can archaeology benefit from cultural transmission theory, but it can 
provide the means for its testing as a general anthropological theory (Garvey 
2018). Let us revisit Neiman’s classic work (Neiman 1995). What would consti-
tute a test of cultural transmission theory in this particular example? In Nei-
man’s paper, we can actually find a good example of testing cultural transmis-
sion theory in the first part of the paper, and we can use the research presented 
in the second part as an inspiration to formulate another hypothetical test of 
the theory. Neiman’s comparison of the patterns produced by simulations of 
the neutral model to the battleship shape of type-frequency dynamics usually 
encountered in the archaeological record constitutes a partial empirical test of 
the relevance of cultural evolutionary models. If the theory is true, suggesting 
that some aspects of the culture, including the transmission of material cul-
ture, can be modeled as an evolutionary system (transmission of information 
with modification), then we have a clear prediction of what the dynamics of 
variant frequencies will look like. This prediction can be compared to the actu-
al changes in variant frequency through time in contexts where the temporal 
position of assemblages is determined by stratigraphy or some independent 
method of absolute dating, such as radiocarbon or dendrochronology. This is 
what Neiman did, and he found a good match. It should be noted, however, 
that this is only a partial test, because there are other models of transmission 
which also produce similar patterns (Acerbi et al. 2012; Klimek et al. 2019; 
Newberry & Plotkin 2022; see also section 5.7 in this book). Therefore, the 
neutral model is a sufficient, but not a necessary condition for this pattern to 
arise. Nevertheless, what is important here is that Neiman was able to show 
that an evolutionary cultural transmission model can reproduce the observed 
empirical patterns. 



56

Chapter 2

In the second part of the paper, Neiman used assemblage diversity as a proxy 
for interactions between communities. I have presented that as an example 
of the use of cultural transmission theory in the middle-range mode. But if 
Neiman had independent evidence for the degree of interactions between dif-
ferent local communities in different time periods, e.g. by means of strontium 
isotope analysis or ancient DNA, he would have been in the position to directly 
test the cultural transmission theory. If the theory was true, the assemblage 
diversity would indeed correlate with the degree of intergroup interaction as 
established by independent lines of evidence. 

In the research presented in this book, cultural transmission theory is mostly 
used in the mode of middle-range theory. The models to be presented in the 
next chapters provide predictions of the spatial and temporal patternings of 
material culture under different regimes of cultural transmission, taking into 
account the formation of the archaeological record and the transformations 
which are specific to this process, like time-averaging and sampling. This 
corresponds to middle-range theorizing in archaeology. But the theoretical 
exercise which constitutes the core of the book can also be understood as mid-
dle-range theory-building in the Mertonian sense of the term, i.e. as a the-
ory-building which is midway between the empirical world and the abstract 
general theory (Merton 1968: 39). I develop and investigate the behavior of 
specifically parametrized models corresponding to a set of past cultural pro-
cesses (on specific spatial and temporal scales) which are less abstract than 
general cultural transmission theory (e.g. the models of cultural evolution as 
presented in Boyd and Richerson 1985).
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“As prehistorians we may be unable to decide why a particular unit has the spa-
tial pattern it does, but we may be able to build stochastic models of contact and 
diffusion which interrelate aspects of culture into different arrangements and con-
figurations.”

(Hodder 1978: 269)

3.1. COMPUTER SIMULATION AS AN EXPERIMENTAL TOOL

In this chapter, I will present the main methods that were used to perform 
the theoretical research which constitutes the core of the book. In the first 
part of the chapter, I describe the basic computer simulation design, whilst 
in the second part, I present the statistical techniques and instruments used 
to analyze the simulation output. The purpose of the simulation is to serve as 
the engine for the implementation of the cultural transmission models. As the 
main aims of the research are to explore and illustrate how various processes 
of cultural transmission generate patterns of material culture variability in 
space and time, computer simulation is a tool that I use to generate the ex-
pected patterns given a particular model and scenario of cultural transmission. 

The method of computer simulation is of great epistemic importance for the 
social sciences (Gilbert & Troitzsch 1999), and especially for the historical 
sciences. Its importance stems from the fact that computer simulation brings 
us as close as possible to the experimental method, which is the gold standard 
in science. The experiments have limited applicability in the social sciences, 
for both ethical and practical reasons, whilst experimentation is completely 
impossible in the historical sciences (Romanowska et al. 2021; Premo 2007). 
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The computer simulation method does not allow us to experiment with the 
past reality itself, but with the models of the past. 

The computer simulation method is one of the most important methods in 
the field of cultural transmission and cultural evolution research (for an ex-
cellent practical guide to constructing and exploring computer simulations of 
the most important cultural transmission models, see Acerbi et al. 2022). It 
should be noted that computer simulation is certainly not the only way to 
explore the models of cultural transmission. Building mathematical analytical 
models using difference or differential equations is also a standard method in 
cultural transmission research (McElreath & Boyd 2007). However, I choose 
to use the agent-based simulation approach as it enables me to mimic more 
closely the processes specific to the archaeological application of the cultural 
transmission models, as my primary aim is to contribute to archaeological 
middle-range theory. An additional benefit of the computer simulation ap-
proach is that it makes it easier to handle the stochastic processes. 

There are two kinds of computer simulations in archaeology – the simulations 
which support theory-building (and hypothesis-testing), and the simulations 
with the purpose of testing archaeological methods (Lake 2014; Crema 2018). 
Throughout the book, I use the method of computer simulation primarily in 
the former mode, as a tool for theory-building. It is used to implement models 
of cultural transmission in order to generate artificial archaeological data. The 
general idea is to implement models of cultural transmission with specific 
parametrization, in order to explore their implications and the patterns they 
produce in terms of the formal variability of (simulated) material culture in 
space and time. The term specific parametrization refers to the fact that the 
spatial, temporal and demographic parameters of the simulations are chosen 
in such a way as to broadly reflect generic autonomous prehistoric or prein-
dustrial sedentary agricultural communities. The patterns in the simulated 
data are then explored in relation to the processes that generated them, for 
the purpose of archaeological (middle-range) theory-building. The simula-
tions presented here are static, as they do not allow any temporal or spatial 
heterogeneity in the transmission model and its parameters (e.g. no chang-
es in population size through time, or switch from one model to another). 
Such realistic details can be included in the simulation, and such simulations 
already exist (Kandler & Shennan 2013; Crema et al. 2016; Kandler & Crema 
2019), and are preferable and superior in practice when the aim is to identify 
and reconstruct transmission models from empirical data. For the purposes of 
this book, where the primary aim is to conduct theoretical explorations, these 
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simple models will suffice and will provide the baseline for adding layers of 
complexity.

The simulations presented in this book can be classified as agent-based mod-
els (ABM) (Lake 2015; Romanowska et al. 2021), with some properties of cellu-
lar automata when it comes to simulations that include spatial processes. The 
core of the simulation engine is the same for all of the simulations presented in 
the next chapters. The modifications of the models and parameter values will 
be described at the appropriate places in the chapters to come. I will present 
the basic structure of the simulations on the example of the Neiman’s (1995) 
formulation of the neutral transmission model, which is the model most often 
implemented and used in the book. 

3.2. DESCRIPTION OF THE SIMULATION

3.2.1. The multiple community case: processes in space and time

I will describe the simulation used to generate the patterns of simulated ma-
terial culture variation in space and time. Note that, as a special case, such a 
mechanism can simulate only temporal effects if the spatial extent is reduced 
to a single location. 

The simulated world is a spatial grid which consists of a x b square cells. The 
grid is bounded, not toroidal, in order to make the spatial setup more realistic, 
as a spatial snapshot of some wider region. It is assumed that the dimensions 
of each square cell are 10 x 10 km, which implies that the square would roughly 
correspond to the catchment area of a generic preindustrial small settlement, 
which should be imagined at the center of the cell. Each cell in the grid con-
tains N items which act like agents in a simulation (Figure 3.1). Each item can 
be thought of as representing a single artifact (e.g. a pot or figurine), used by 
a single person, of a certain type or meme variant (the terms type and variant 
will be used here interchangeably), labeled by an integer. This is the systemic 
(living) assemblage (sensu Schiffer 1972; 1976). The systemic assemblage re-
fers to the set of artifacts in a certain settlement which were in contempora-
neous use (e.g. all axes or all chairs that were in use at certain point in time). 
In the context of simulation, the contemporaneity refers to one simulation 
time step. I am assuming an approximately 1:1 ratio between the number of 
artifacts and the number of people for this hypothetical class of material cul-
ture, so the N loosely corresponds to the settlement population size as well. 
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This relationship between the census population size, the number of artifacts 
(objects) and the number of artifact makers needs some additional clarifi-
cation. The basic items of the simulations are artifacts (i.e. meme variants 
carried by the artifacts), not human agents, as the algorithm operates directly 
on the memes and their frequencies. This is the agent-based model, so the 
agents, in the technical sense, are the memes. But it would be preferable to 
have an interpretation of the simulation in terms of the actual human agents 
as well. This is possible under certain assumptions, which I will explain by 
means of an example. Let us imagine that the items/artifacts are ceramic 
bowls, and that most people in the settlement use one such bowl (e.g. they eat 
lunch every day from that bowl). It is unrealistic to imagine that each person 
is a potter; therefore the number of potters must be much smaller than the 
total number of people. For example, if we assume that the each household 
produces its own pottery, and assuming 5 people per household, the number 
or potters would be 20 in a population of 100 people. If each potter makes the 
same number of bowls, then the number of bowls made by each potter is 5. 
The assumption that I am making is that for each new bowl that is made, the 
potter is independently choosing a meme variant. This means that one potter 
is not going to use the same decoration and/or shape for all his bowls, but will 
decide for each new bowl which decorative motif to apply or how to shape it. 
Of course, the validity of this assumption is not absolute, it may be questioned 
and different assumption can be made. I make the assumption explicit here, 
as this is the way to interpret the number of items as approximating the set-
tlement population.

In each iteration of the simulation, which is interpreted as a one year time step, 
for each item from each cell in the grid, the computer first decides whether 
it will move the item from the systemic assemblage to the archaeological as-
semblage associated with this particular time step. The decision is probabil-
istic and depends on the average use-life parameter (L). The probability that an 
item will enter the archaeological record at any time step is equal to 1/L. For 
example, if the average use-life is 2 years, this means that a half of the living 
assemblage (randomly sampled) will go to the archaeological assemblage in 
one time step of the simulation16. This simulates the fact that each artifact is 
discarded at some point (as it is broken or ceases to be useful for some other 
reason) and enters the archaeological record. Therefore, for each time step 

16  The establishment of the correspondence between real-world time and simulation time in iterations 
depends on establishing the correspondence of the average use-life of items in the simulation and 
iterations. This is completely arbitrary. For example, one way of interpreting the setup presented in 
the previous paragraph is as described (one iteration = one year). But if we decide that one iteration 
corresponds to two years, then the use-life of two iterations, corresponds to an average use-life of 
four years. This offers the opportunity, if necessary, to re-scale the simulation results for items with 
different use-lives than the one I took as a standard.
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the computer records the contents (the variant frequencies) of the archaeo-
logical assemblage produced, which consists of discarded items. Whenever L 
is different from 1, we have a situation of overlapping cultural generations in 
the archaeological record. This is a more realistic scenario than simulations 
presented in Porčić and Nešić (2014) and Porčić (2015), where an entire sys-
temic assemblage went into the archaeological record at each time step – the 
non-overlapping cultural generations case.

Longitude
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Figure 3.1.  A schematic representation of the default simulation space and cell structure. The spatial 
grid consists of a x b cells (20 x 20 in this case). In each cell there is a population of N items 
(100 in this case) with particular frequency distribution of meme variants or types, marked 
by different colors. 

Each discarded artifact during a time step needs to be replaced. This is where 
the cultural transmission comes in, because a type or variant needs to be as-
signed to the item which is newly introduced into the systemic assemblage in 
order to replace the discarded object. As I stated earlier, I will describe only 
the simulation of the neutral model here. There are three options for how to 
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assign the cultural variant to the new item according to the neutral model that 
is used for the baseline:

1)  Copy a variant from a randomly chosen item in the living assemblage pop-
ulation of the particular cell from the beginning of the time step (before the 
discard). The probability of copying each variant will be proportional to the 
relative frequency of the variant in the living assemblage of the particular 
cell before the discard. 

2)  Generate a mutation – introduce a globally (not just in relation to the par-
ticular cell) novel variant into the system. In this case the next free in-
teger (not present within a particular cell or other cells in the grid) will 
be assigned to the item. This is equivalent to the infinite allele models of 
mutations in population genetics (Ewens 2004: 111-119). The probability 
of mutation is given by the ν parameter (from Neiman’s model, I use the 
same notation). For example, if the probability of mutation is 0.005 (ν = 
0.005), this implies that in 5 out of 1000 cases, a type will not be cop-
ied from the existing pool of types, within or outside a given cell, but a 
completely novel type will be introduced. The mutation can occur in two 
ways. It can arise as a deliberate and intentional act to create something 
completely new and not to copy any of the existing variants, or it can be a 
consequence of the copying error. According to Eerkens and Lipo (2005; but 
see also Crema et al. 2023), copying errors are generated through a) errors 
in perception generated by cognitive limits in evaluating metric differences 
between two objects, and b) errors due to imprecision in manual dexterity: 
 
copying error = error in perception + error in execution (motor skills).  
 
How to choose the realistic values for the mutation rate parameter? This is 
a very difficult question. Shennan suggests obtaining the estimates from 
the data (Shennan 2011). This seems to be the best approach, as it takes into 
account the fact that the mutation rate may be idiosyncratic to the class of 
material culture under investigation and to the specific historical situation. 
But the estimation of mutation rates is difficult to make in practice, as there 
is more than one way of making the estimate (Shennan & Wilkinson 2001), 
and the estimates may be biased in small samples (Porčić 2015). In the ab-
sence of clear guidelines, I experiment with different values and different 
orders of magnitude, as one of the research tasks is to explore the influence 
of this parameter on the spatial and temporal patterns. The theory suggests 
(see Chapter 2) that what determines the nature of the neutral transmission 
process (the diversity of variants and the dynamics of frequency change) is 
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actually the parameter theta, which is a product of population size and mu-
tation rate. Therefore, different combinations of population size and muta-
tion rate can result in the same theta value which determines the outcome 
of the evolutionary process. From this point of view, it is sufficient only to 
vary the theta parameter, but I want to keep its components separately in 
order to have a better anthropological comprehension of what is actually 
going on and because population size and mutation rate are estimated in 
different ways from the archaeological data

3)  Copy a variant from a randomly chosen item from a different cell (a cell other 
than the cell to which the item which is being replaced belongs). This rep-
resents the intercommunity interaction and the probability of this option is 
given by the m parameter. If this parameter value is, for example, 0.1, this 
means that in 1 out of 10 cases, a type from another settlement will be cop-
ied. The choice of the cell from which a variant will be copied is probabilis-
tic, and the probabilities are proportional to the distribution of the inverse 
square of Euclidean spatial distances of all other cells from the given cell. 
The distance is between the centroids of the cells. Therefore, the probabil-
ity of interaction with another simulated community is determined by the 
geographical distance and it is based on the model of interaction supported 
by empirical research: 

“Much research has shown that intermigration between two populations is ap-
proximately proportional to a simple function of the distance between them. One 
such function currently employed is d-c, where d is the distance, and c is close to 2.”

 (Cavalli-Sforza and Feldman 1981: 163).

First the matrix of Euclidean distances D between the centroids of cells for 
all pairs of cells is calculated. Then this distance matrix is transformed into a 
similarity matrix S by applying the equation 

2
1
ij

ij d
s �

 (Eq. 3.1) 

where dij is the Euclidean distance between the centroids of the cells. Then 
for each cell, the probability of interaction with any other cell is calculated by 
normalizing the row vector of similarities corresponding to each cell, so that it 
adds up to 1. This is done by dividing each sij value by the sum of si values in the 
corresponding row (excluding the value of the similarity of the cell to itself).
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Such a model of spatial behavior translates into interactions that are usually 
localized. Interactions with cells that are further away are highly unlikely, as 
the probability of copying from different communities decreases rapidly with 
distance in such model. Increasing the probability of interaction increases the 
frequency of agents that “choose” to copy a variant from an item from a dif-
ferent cell. It should be noted that in this case, the introduced variant does not 
have to be globally novel – it may be already present in the local community, 
if it was present in all cells from the beginning or if it was introduced in an 
earlier episode of the interaction. Therefore, unlike with Neiman’s model, the 
m + ν should be thought of as the maximum possible local overall mutation 
rate. This maximum is never reached and is much closer to ν, as the neighbor-
ing cells, which are the most likely to be sampled from, usually have the same 
or similar repertoire of cultural variants as the considered cell. 

What would be an anthropological interpretation of interactions, and how can 
it help us to specify the realistic parameter (of interaction) values? As this is a 
very general model, different interpretations are possible. For example, we can 
interpret interactions as marital migrations – persons coming from another 
settlement, or as trade visit episodes. Other possibilities would include trade 
and exchange of material culture between microregions (e.g. Graves 1991). 
Even warfare could lead to an increased social interaction between commu-
nities that would manifest itself as the introduction of traits from other com-
munities (Lycett 2019). A better alternative to thinking about ways to adapt the 
interaction parameter to reflect a certain anthropological scenario would be to 
construct a more complex agent-based model, where processes such as mari-
tal residence migrations, visits, and trade are explicitly modeled. However, in 
the models used in this book, this parameter remains a black box.

3.2.2. The single community case: a process in time

The single community simulation is used to explore the patterns in time. There 
is no space in this simulation, as we are only looking at the single community 
(e.g. from a single cell). The algorithm of the simulation for the neutral model 
is the same as for the multiple community case, with the difference that there 
is no interaction parameter. Therefore, in each time step, when an item is dis-
carded (becomes a member of the archaeological assemblage associated with 
a particular iteration of the simulation) and is replaced, there are only two 
possibilities compared to the multiple community model:

1)  Randomly copy a variant in accord with the neutral model presented above.
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2)  Generate a mutation, again assuming that the mutation is the consequence 
of the deliberate innovation or the copying error. In this case, the mutation 
rate μ is a single parameter (its components are not modeled separately), 
which may be conceptualized as a combination of true in situ mutation or 
mutation due to the introduction of a variant from some other community 
(which is not simulated in this case) which was not previously present in 
the given community (i.e. this is Neiman’s model – the only difference is 
that the cultural generations may be overlapping).

3.2.3. The reproducibility of the simulation results

I did not systematically present the results of the sensitivity analyses and re-
peated simulation runs for some of the simulations, but the multiple experi-
ments I performed suggest that the patterns are very robust. The reader does 
not have to take my word for it, as I provide a full code for all of the simu-
lations in the Appendices of the book, so this can be tested and checked. In 
Appendix 1, the codes for the neutral, the conformist, and the anti-conformist 
(not explored in the book for the multiple community case) models of cultural 
transmission in the multiple community case is presented. In Appendix 2, the 
code for the Axelrod model (Axelrod 1997) for the multiple community case, or 
more precisely, an interpretation of the Axelrod model, is given. In Appendix 
3, the reader will find the code for the single community case for the neu-
tral, conformist, and the anticonformist models. In addition to the simulation 
code, I also provided the code for data-collection and time-averaging. The 
computer simulation code and output data aggregation code are written in the 
R programming language (R Core Team 2019). Additionally, R code from the 
Appendices along with the specific code used in the data analysis is available 
in the Zenodo repository (doi: 10.5281/zenodo.7778260).

3.3.  THE STATISTICAL INSTRUMENTS FOR SUMMARIZING 
AND ANALYZING THE SIMULATION OUTPUT

3.3.1. The time-averaging of simulated assemblages

As archaeological assemblages coming from the settlements are almost al-
ways time-averaged – as a result of multiple discard episodes (Bailey 2007) 
- we cannot look at the simulated archaeological assemblages from single it-
erations as realistic units of analysis. For this reason, the assemblages which 
represent the main units of analysis are generated by aggregating archaeolog-
ical assemblages from several individual iterations (Madsen 2012; Premo 2014; 
Porčić 2015). The frequencies of variants are then counted for each aggregated 
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assemblage. This is how I simulate the time-averaging of the archaeological 
record. The levels of time-averaging varied in different experiments and the 
details are presented in the corresponding chapters. 

3.3.2.  Analyzing the configuration of assemblages in the typological 
space

In order to extract a single measure of assemblage structure (i.e. the major 
dimension of the typological variation) and to reduce the dimensionality of 
the typological space, I apply correspondence analysis (CA) (Shennan 2004: 308-
345; Greenacre 2007) to the variant frequencies from accumulated assem-
blages. The CA is a multivariate technique for dimensional reduction, and the 
scores on the CA axes can be interpreted as scores on the general typological 
dimensions, as they are mathematically constructed in such a way as to en-
compass the largest portion of (co)variability in variant frequencies between 
assemblages. The distances between the assemblages in the CA plot, which is 
usually the defined by the first and second CA axes, can be interpreted as typo-
logical distances. The closer the two assemblages are on such a plot, the more 
similar they are in terms of relative variant frequencies, and vice-versa. When 
it comes to patterns in time, CA is used as a seriation technique (Chapter 4). 
When it comes to patterns in space, CA is used to extract the summary meas-
ures of typological variability in order to explore the patterns in the typological 
space produced by different transmission models, and to explore the relations 
between the typological and spatial dimensions. 

The typological distance matrix between pairs of cells (settlements) is calcu-
lated by using the Brainerd-Robinson (BR) coefficient (Brainerd 1951; Robinson 
1951), which is a similarity metric specifically designed to measure the (dis)
similarity between archaeological assemblages. The value of the BR similar-
ity between assemblages i and j is equal to the sum of the differences of the 
variant percentages between assemblages i and j for all n individual variants, 
subtracted from 200:

�
�

��
n

k
jkik PP

1
200

 (Eq. 3.2)

- where Pik is the percent of the kth variant in the i-th assemblage, and Pjk 
is the percent of the k-th variant in the j-th assemblage.
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The greater the value of the BR index for a pair of assemblages, the more 
similar they are in terms of the relative frequencies of attributes/types and 
vice-versa. In order to turn the BR similarity index into a distance measure, 
it is simply subtracted from 200; therefore the formula for the BR distance is:

�
�

��
n

k
jkikij PPBR

1  (Eq. 3.3)

- where Pik and Pjk are percentages of variant k in assemblages i and j re-
spectively. The BR distances are calculated in R using the BRsim func-
tion (Alberti 2021b).

In addition to calculating a distance matrix based on the variant frequencies, 
I also calculated a distance matrix based on the presences and absences of 
variants. The measure of inter-assemblage distance is the Jaccard coefficient 
(Shennan 2004: 228-230; Jaccard 1912), which measures distances17 between 
a pair of assemblages based on the presence and absence data. This lowers the 
resolution of the analysis, as it neglects the information on variant frequen-
cies, but given that the presence/absence resolution is usually the best that 
can be achieved in empirical research, it is useful to explore the data using the 
statistical instrument that is comparable to the larger number of empirical 
studies. 

I also use hierarchical cluster analysis to create groups of squares with similar 
assemblage structures – similar in terms of variant frequencies. The cluster 
analysis uses all of the variant frequency information from the data, as the 
typological similarity matrix is created from a full dataset, but the number of 
clusters needs to be specified by the analyst (it is usually set to 4 in this case). 
Cluster analysis is used in Chapter 4 to mimic the construction of archaeolog-
ical cultures as statistical groups.

As for the clustering algorithm, the analyses are performed using the Ward 
method for the BR metric and the average linkage method (see Shennan 2004 or 
some other general textbook on cluster analysis for details about these stand-
ard clustering algorithms) for the Jaccard distances.

17  The Jaccard distance is obtained from the Jaccard similarity coefficient simply by subtracting its 
value from 1.
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3.3.3. The correlations between typology, space and time

In the research presented in the following chapters, I explore the relations 
between the typological dimension on one side, and the spatial and temporal 
on the other, in two general ways:

1)  By correlating the major typological dimensions extracted by CA with the 
major spatial directions and/or time. 

2)  By calculating and analyzing the correlations between the typological, spa-
tial (Euclidean distances between cell coordinates), and temporal distance 
(Euclidean distances between midpoints of assemblage temporal spans) 
matrices between assemblages. I use the Mantel matrix correlation for this 
purpose (Mantel 1967). Technically, the correlation between two matrices is 
calculated as a simple correlation coefficient, where the units of observation 
are pairs of cells and the variables are the corresponding distance values 
from the two matrices. Mantel (1967) constructed a specific technique of 
significance testing for such a correlation, based on the permutations of 
the matrices, because the standard way of calculating the statistical signifi-
cance (p value) is not valid in this case, as the assumption of the independ-
ence of observations is violated (as one cell is in several pairs). Although I 
rarely make use of the actual permutation test (the Mantel test), as the sim-
ulations allow me to work with entire populations rather than samples (so 
the effect size is more important than the p value), I will still refer to this 
kind of correlation as Mantel’s correlation, to indicate the fact that we are 
looking at the correlations between distance matrix entry values rather than 
individual variable values. It should be noted that Mantel correlation anal-
ysis has its problems, and that it represents a very rough tool which should 
be interpreted with caution (Guillot & Rousset 2013; Nunn et al. 2006).

The correspondence analysis, the cluster analysis, and the Mantel matrix cor-
relation are analytical instruments which are often used in archaeology for 
studying the formal variation of material culture in space and time. I use the 
same statistical instruments to analyze the simulation output data. This is 
crucial for archaeological theory-building, as it allows us to directly compare 
the simulated and empirical observations. In this chapter, I have only present-
ed the statistical instruments at the most general level. The specifics of the 
individual analyses will be described in detail at the appropriate places in the 
forthcoming chapters.
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PATTERNS IN SPACE

“It might be suggested that prehistorians have insufficient knowledge and theo-
retical ideas to interpret distribution maps of material culture items satisfactorily.” 

(Hodder 1977: 239)

4.1. THE LAYOUT OF EXPERIMENTS

In this chapter, I use computer simulation in order to demonstrate and explore 
how spatial patterns of formal variability can arise from simple cultural trans-
mission models. The aim is to simulate particular transmission scenarios to 
see the implications of particular models for the distribution of type frequen-
cies in space. Of course, time plays its part here as well, as cultural transmis-
sion must unfold in time, but the focus of this chapter will be on the spatial 
patterns, while holding time constant. This is achieved technically by looking 
at the spatial patterns from the same temporal slices. Again, this does not 
exclude the role of time in making two assemblages similar or different (e.g. 
through drift), but this kind of influence is not systematic. Drift assumes the 
passage of time, but time itself cannot systematically influence the patterns in 
space that we are interested in. Given the quasi-realistic setup of the simula-
tions, this will enable us to see how long it takes for some kind of equilibrium 
pattern to emerge, or simply to see what will happen in the first 1000 years 
even if this is not the equilibrium state, from the initial conditions which also 
have some broad anthropological interpretation (e.g. when all assemblages are 
identical at the start - this corresponds to a situation which immediately fol-
lows some fast migration). I will use the statistical instruments presented in 
the previous chapter to explore the relationship between typology and space.
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I will start with the simplest model of cultural transmission, which is often 
used as the baseline model or null hypothesis for the evolution of style – the 
neutral (unbiased) model of cultural transmission (Shennan & Wilkinson 2001; 
Neiman 1995; Bentley et al. 2021; Bentley et al. 2004; Hahn & Bentley 2003). 
The main idea is to demonstrate how this model can produce patterns in space 
which may resemble population structure even if there is none. In the first two 
experiments with the neutral model, the aim is to see what kinds of patterns in 
space are generated, and to see how the intensity of inter-community interac-
tions affects the patterns. In the third experiment, I explore how the shape of 
the study area influences our perception of the patterns.

After exploring the neutral model, I move on to two models – the conform-
ist model and the Axelrod model – which are more complex, in the sense that 
they assume something about how social and cultural factors influence in-
dividual decision-making. There are two main questions that I try to answer 
by experimenting with the conformist and the Axelrod models: 1) Can these 
models generate relatively discrete spatial clusters of typologically similar cell 
assemblages which correspond to the traditional idea of archaeological cul-
ture, starting from the initial cultural situation where all cell assemblages are 
identical at the beginning? 2) If discrete cultural groups are there to begin with 
(i.e. there are two distinct spatially clustered groups of cell assemblages), can 
these two models generate continuity, i.e. make the initial situation of cultural 
boundaries in space persist through time?

For the conformist model, in the first two experiments I explore the influence 
of the community interaction at relatively high levels of conformism in the 
case where there is no spatial structure to begin with (i.e. all assemblages are 
identical in the first iteration). Then I conduct two additional simulation ex-
periments, to investigate what happens if there is a spatial population struc-
ture at the onset of the simulation and how the level of conformism deter-
mines whether the initial population structure will persist through time.

For the Axelrod model, I explore whether it can generate discrete spatio-cul-
tural groups from the initial uniform cultural situation, and if it can preserve 
the already existing structure.  I conducted 5 experiments to see how the de-
gree of interaction and the degree of homophily influence the results in two 
contrasting situations – when the initial cultural situation is uniform and 
when the spatial structure of material culture is there to begin with.
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4.2. THE NEUTRAL MODEL EXPERIMENTS

The neutral model was already described in Chapters 2 and 3, as it is the flag-
ship model of the book, so I will only present a quick reminder here. This 
model assumes random copying of cultural variants within settlements with a 
possibility of mutation (the ν parameter) and copying from an agent from an-
other settlement (the m parameter). In the cases when agents choose to copy 
from a different settlement, they copy from a randomly selected agent from 
another settlement. The frequency of this behavior is determined by the simu-
lation parameter m, which is the probability of interaction. The probabilities of 
choosing a particular settlement to copy from are proportional to the inverse 
square of the spatial distances between pairs of settlements. 

In Chapter 3 I described how this model is implemented in a computer sim-
ulation; and it is now time to run the simulation experiments with concrete 
parameter values. The spatial grid consists of 20 x 20 cells. We should imagine 
that a settlement with 100 agents is present at the center of each cell. The 
probability of mutation is 0.005 (ν), meaning that in 5 out of 1000 trans-
mission events, an agent will not copy a variant from another agent but will 
introduce a new one. The choice of this concrete mutation rate value is admit-
tedly arbitrary, but in the absence of a better solution I chose this value to be 
in the same order of magnitude as mutation rate estimates in Shennan and 
Wilkinson (2001) and Shennan and Bentley (2008). The average use-life of 
each agent is 2 iterations, implying that 50 items will enter the archaeological 
record in each iteration of the simulation. The starting systemic (living) as-
semblage of each settlement is the same for all cells, unless stated otherwise. 
Each agent (item) is randomly assigned to one of the 10 initial variants. Each 
agent represents a single artifact (a bowl for example). The simulation is run 
for 4000 iterations, starting from these initial assemblages. The 4000 itera-
tion is an arbitrarily chosen value – to give sufficient time for the patterns to 
show at a millennial time scale, if there are any.

Time-averaged assemblages are created by aggregating the variant counts 
from the simulated archaeological record from 50 successive iterations. These 
accumulated assemblages correspond to site-phases or horizons. The size of 
each accumulated cell assemblage (per interval) is equal to the size of the 
cell assemblage entering the archaeological record in each iteration, times 
the number of aggregated iterations – 50 x 50 = 2500 items. To establish a 
correspondence of the simulation setup with reality, we should imagine that 
each cell of the grid is 10 x 10km, and each iteration corresponds to 1 year. 
With these assumptions, our simulation refers to an area of 40000 km2, over 
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a period of 4000 years. From each square of the grid we have assemblages of 
2500 items each from the accumulated 50 iterations, given the average use-
life of 2 iterations.

It is important to emphasize and reiterate an important point here: the neutral 
model does not assume that individuals are deciding which variant to copy 
by running random number generators in their heads. The neutral model as-
sumes that each individual has her/his own reasons for choosing one variant 
over another – when decorating a pot for example –, but that the aggregate 
result is such that it is as if each individual chose the decoration variant ran-
domly according to the probabilities of the current frequency distribution of 
variants in the population (Shennan 2011). Therefore, the neutral model does 
assume agency and intention, but this agency is a black box at the individual 
level. 

4.2.1. The low interaction neutral model scenario (Experiment 4.1)

I will start with the low interaction scenario where the probability of interac-
tion (ν) is 10%.18 To reiterate, this means that in 10% of cases when a new item 
needs to be made, a variant will be copied from a randomly chosen agent from 
some other cell, with the probability of cell choice being proportional to the 
inverse of the squared distance between the cells. 

In Figure 4.1 we can see the spatial distribution of variant frequencies after 50 
iterations as summarized by the first CA axis. There is no spatial clustering 
of typologically similar cells in this graph. Most of the squares are more or 
less similar to one another, reflecting the initial conditions. After 500 years, 
when we look at assemblages from different cells, generated by accumulating 
the archaeological assemblages produced by the simulation between 451 and 
500 iterations, a clear pattern emerges which remains relatively stable further 
on (cf. situation after 1000 years in Figure 4.1). A clear gradient in the corre-
spondence analysis (CA) axis 1 scores is visible along the diagonal running in 
the SW-NE direction (Figure 4.1). As the entire region is square, both diag-
onals represent major spatial directions; therefore it is by chance alone that 
that particular diagonal is the direction of the gradient. The gradient along the 
other diagonal is usually captured by the CA axis 2 (Figure 4.1). 

18  The adjective low is used only in the relative sense, as I explore a scenario with a three times higher 
probability of interaction later in the chapter. As the nature of intercommunity interaction is a sort 
of a black box in terms of a precise anthropological interpretation in my simulations (see Chapter 3), 
the terms low and high should only be understood in relative, not in absolute terms. 
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It should also be noted that the value of explained inertia19 by the first two axes 
is almost identical, which is the consequence of the existence of the two equal 
major spatial directions20 along the diagonals of the square. We can clearly 
see that for the time slice between 451 and 500 iterations. The CA axis 1 and 
CA axis 2 explain around 0.9% of total inertia each21. When the scores of the 
CA 1 axis are plotted in space, we can see a gradient in the SW-NE direction, 
whereas when the CA axis 2 scores are plotted in space, the gradient is in the 
SE-NW direction. 

After 1000 iterations, the gradient is also present, but it is more closely aligned 
with the W-E direction rather than the diagonal. As I will discuss below, in the 
case of the square study region, the direction of the major typological gradient 
seems to oscillate around the diagonals in the dynamic equilibrium, whereas 
in the case where there is a single major spatial direction (e.g. if the study area 
has the shape of a rectangle), the typological gradient aligns with the domi-
nant spatial direction.

19  ‘Inertia’ is the equivalent of variance in CA analysis jargon (Greenacre 2007; Shennan 2004).
20  The term ‘major spatial direction’ refers to the longest axis of the study region. In the case of the 

square study region there are two major spatial directions – the diagonals.
21  As noted in Porčić and Nešić (2014), the low percentage of inertia (variance) explained by the first 

two axes is due to the fact that there are a great number of variants that appear only once. There is no 
covariation between the presence of these variants, therefore they need to be individually accounted 
for by different CA dimensions. The sheer number of such variants produced in each iteration – with 
this parameter setup, 50 new variants are produced in each iteration, and most of them are never 
copied – “eats” up most of the inertia in the data.
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Figure 4.1.  The configuration of cell assemblages in the typological space defined by the first two 
CA axes (the first column of panels), and the plot of CA 1 and CA 2 scores for each cell in 
space (the second and third column), at different time points, with time-averaging, for the 
low interaction neutral transmission scenario (Experiment 4.1).

In order to illustrate how the illusion of discreteness can be formed from a 
continuum, I perform cluster analysis on the BR and Jaccard distances be-
tween the time-averaged cell assemblages from the time interval of 951-1000 
iterations. I present the results for the 2, 4, and 8 cluster solutions. The results 
of the cluster analysis suggest that there are spatial blocks with squares which 
have a similar frequency structure of variants (Figure 4.2). When the cluster 
analysis is applied on the Brainerd-Robinson (BR) distance matrix, the re-
sulting spatial pattern is fuzzy, but when it is applied on the Jaccard distance 
matrix, the resulting pattern is clear cut (Figure 4.2). Counter-intuitively, the 
lower resolution metric based only on presences and absences of type – the 
Jaccard distance –, gives more clear-cut results than the Brainerd-Robinson, 
which utilizes the full frequency information. But this can easily be explained 
by the fact that the Jaccard coefficient is better at detecting the spatial signal 
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when it comes mainly from the low frequency types. Namely, if assemblages 
have similar frequencies of high-frequency types and they differ mostly on 
low-frequency (rare) types, which is the case here, then the BR distances will 
be dominated by high-frequency patterns and will generally be low, whereas 
the Jaccard distances will be able to capture the underlying pattern of rare 
variants as they are given equal weight in the calculation process, as variant 
frequencies are reduced to presences (1) and absences (0). 

In any case, the application of cluster analysis to the neutral model output will 
produce typological clusters which are also spatially clustered. If we accept the 
assumption that the discovery of archaeological cultures in traditional cul-
ture-historical archaeology was a kind of informal cluster analysis (see Chap-
ter 1), then this exercise clearly shows how the illusion of discrete groups can 
be created even if the underlying model assumes no groups or social mecha-
nisms of group formation or cohesion, and the pattern itself is a continuum 
rather than a discrete grouping.
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Figure 4.2.   Cluster membership of each cell plotted in the study space. Cluster solutions with dif-
ferent number of clusters (2 in the upper, 4 in the middle, and 8 in the lower panel) are 
presented for the BR and Jaccard distances between time-averaged cell assemblages 
for the low interaction neutral transmission scenario for the 951-1000 iterations interval 
(Experiment 4.1). Different clusters are marked by different colors, but the association of 
color and cluster is arbitrary.
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Therefore, this example demonstrates that as time goes by, the spatial struc-
ture is formed where initially there was none, and this happens very fast, 
within the first 500 years. All assemblages were identical in the beginning, but 
the result would be the same if they were all different to begin with (the reader 
can try this using the R code from Appendix 1). When all assemblages are the 
same at the beginning, the variation starts to build up, but then it gradually 
collapses as the interactions force the spatial pattern; whereas if all assem-
blages start differently, the collapse of the existing variation starts immedi-
ately. The correlation between the typological and spatial distances becomes 
stronger until dynamic equilibrium is reached, where the Mantel correlation 
coefficient oscillates around 0.4 when typological distances are measured with 
the BR distance, and around 0.7 when the Jaccard distance is used (Table 4.1, 
Figures 4.3 and 4.4). This is the classic isolation by distance pattern (see also 
Crema et al. 2014b and Porčić & Nešić 2014). The typologically similar assem-
blages cluster in space, but the noise created by the stochasticity of the trans-
mission process within the cells decreases the correlation between the spatial 
and typological distances.
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Figure 4.3.   The typological (as measured by BR or Jaccard distances) vs. spatial distance between 
time-averaged cell assemblages at different times for the low interaction neutral trans-
mission scenario (Experiment 4.1).
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Figure 4.4.  The temporal dynamics of the correlation coefficient (Spearman’s rho) between typolog-
ical and spatial distances for the low interaction neutral transmission scenario (Experi-
ment 4.1).

4.2.2. The high interaction neutral model scenario (Experiment 4.2)

In the high interaction scenario, where the probability of interaction (m) is 
increased to 30%, the same pattern is found, only in this case the spatial pat-
terning is stronger (i.e. there is a higher correlation between typology and 
space) and the spatial structure forms more rapidly than in the low interac-
tion scenario – the Mantel coefficients quickly increase with time and reach 
the equilibrium value (Figures 4.5-4.6, Table 4.1). Again, the space-typology 
correlations are higher when the typological distances are measured with the 
Jaccard distance than with the BR distance. In the high interaction scenario 
the equilibrium Mantel correlation between spatial and BR distances is higher 
than in the low interaction scenario – it is around 0.6. 
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Figure 4.5.   The typological (as measured by BR or Jaccard distances) vs. spatial distance between 
time-averaged cell assemblages at different times for the high interaction neutral trans-
mission scenario (Experiment 4.2).
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Figure 4.6.   The temporal dynamics of the correlation coefficient (Spearman’s rho) between typological 
and spatial distances for the high interaction neutral transmission scenario (Experiment 4.2).

We can see in Figure 4.7 that the gradient is already visible after the first 50 
iterations, and the correlations between typological and spatial distances are 
already moderate. Again, the Jaccard distances are more strongly correlated 
with the spatial distances than the BR distances. The configuration of assem-
blages in the typological space defined by the first two CA axes resembles the 
rotated rectangular shape of the study area. 

Degree of 
interaction

Accumulation 
interval

Mantel correlation 
(BR distance vs. 
spatial distance)

Mantel correlation 
(Jaccard distance vs. 

spatial distance)

CA  
axis 1 

inertia

CA  
axis 2 
inertia

Low  
(m = 0.1)

1-50
0.025  

(min = -0.02;  
max = 0.06) 

0.23  
(min = 0.15;  
max = 0.31)

0.9% 0.8%

451-500
0.31  

(min = 0.23;  
max = 0.37) 

0.74  
(min = 0.7;  

max = 0.78)
1% 0.9%

951-1000
0.48  

(min = 0.41;  
max = 0.52)

0.75  
(min = 0.72;  
max = 0.78)

1% 0.9%

High  
(m = 0.3)

1-50
0.11  

(min = 0.04;  
max = 0.22)

0.53  
(min = 0.49;  
max = 0.56)

0.8% 0.8%

451-500
0.54  

(min = 0.47;  
max = 0.63)

0.75  
(min = 0.72;  
max = 0.77)

1.3% 1.3%

951-1000
0.64  

(min = 0.57;  
max = 0.68)

0.74  
(min = 0.7;  

max = 0.78)
1.4% 1.3%

Table 4.1.  The mean, minimum, and maximum Mantel correlations between typological and spatial 
distances for the high and low interaction scenarios of the neutral model, based on the 30 
simulation repetitions.
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Figure 4.7.  The configuration of cell assemblages in the typological space defined by the first two 
CA axes (the first column of panels), and the plot of CA 1 and CA 2 scores for each cell in 
space (the second and third column) at different time points, with time-averaging, for the 
high interaction neutral transmission scenario (Experiment 4.2).

4.2.3. The nature of typological gradients (Experiment 4.3)

The typological gradients can be seen more clearly if the simulated region is 
not square but rectangular in shape. In this experiment, I run the low interac-
tion neutral transmission scenario when the shape of the study region is rec-
tangular, with a grid of 40 x 10 cells. Figure 4.8 shows the configuration of cell 
assemblages in the typological space as defined by the first two CA axes and 
the plot of the CA axis 1 scores in space after 500 iterations of the low interac-
tion neutral transmission with time-averaging (aggregation interval 451-500 
iterations). The assemblages in the CA space form the recognizable horseshoe 
(arch) pattern. The horsehoe pattern is indicative of the chronological signal 
in the data when the seriation is performed by CA or multidimensional scal-
ing (MDS), and the direction between the ends of the horseshoe reflects the 
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passage of time (Porčić 2018; Baxter 1994; Alberti 2021a). Here, we can see that 
if the study area is dominated by a single spatial direction, the same pattern 
will arise, and in this case the typological gradient is purely spatial, as all the 
assemblages come from an identical temporal interval.
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Figure 4.8.  The configuration of cell assemblages in the typological space defined by the first two CA 
axes for the rectangular region (40x10 grid). CA axis 1 accounts for 1.3% of the inertia; CA 
axis 2 accounts for the 1% of the inertia (Experiment 4.3).

The dominant typological gradient is aligned with the longer side of the study 
area rectangle which is the dominant spatial direction (Figure 4.9). The scores 
on the second CA axis form an interesting pattern in space. The similarity in 
cell assemblages drops of away from the center of the study region (i.e. away 
from the vertical line which divides the study region in half along the longer 
side of the rectangle) (Figure 4.9). This does not mean that assemblages to-
wards the edges of the study region are similar – they are only similar in the 
sense that they differ from the central cell assemblages.
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Figure 4.9. The plot of CA axis 1 and 2 scores in space for the rectangular study region.

We may be tempted to think of the major spatial directions as the major di-
rections that channel cultural transmission, but this would not be correct. 
There is no directionality in the transmission process. From the perspective 
of the individual cell, all directions are approximately equally likely22 for be-
tween-square interactions. The gradients are not real in any absolute sense. 
They always align with the major spatial direction of observation (see also 
Porčić & Nešić 2014: Figs. 5 and 7). We can see this clearly if we take two or-
thogonal transects from the results of the high interaction simulation scenario 
(Figure 4.10).

22  Technically, the cardinal directions are more likely from the perspective of a single cell, because the 
distance between that cell and the other cell which is immediately to the north/south or east/west is 
equal to one cell side, whereas the distance between the cells and its NW, NE, SW and SE neighbors 
is higher by the factor of the square root of 2. 
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Figure 4.10.  Horizontal and vertical subsections of the study region. The plot of the CA axis 1 scores 
for the high interaction neutral transmission scenario after 550 iterations (aggregated as-
semblages from 501-550 iterations), based on the CA of the entire set of cells. For the en-
tire area, the typological gradient follows a NE-SW direction. The cell assemblages from 
the vertical and horizontal transects shown in the figure are selected for the separate CA 
analysis. The direction of the typological gradient for the horizontal transect is horizontal, 
whereas it is vertical for the vertical transect.

If we apply the CA only to the squares of the horizontal transects and plot 
the CA axis 1 scores in space, we will find that the gradient now follows the 
East-West spatial direction, which is the major spatial direction of the transect 
(Figure 4.10). Bear in mind that no new simulation was run. We only took a 
sample of squares from the already existing results after the entire simulation 
was run in the entire original rectangular region, as if we excavated or con-
sidered the sites exclusively from this transect. The equivalent result arises 
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if we only take the vertical transect – the typological gradient as measured 
by the CA axis 1 now follows the North-South direction (Figure 4.10). If we 
look at the distribution of the assemblages in the typological space defined by 
the first two CA axes, we will again notice the horseshoe pattern suggesting 
the presence of a spatial gradient of type frequencies (Figure 4.11). There-
fore, depending on the size and shape of the study area, different typological 
gradients and different spatial patterns of style can arise from the same data 
generated by the same simulation run. This demonstrates that the observed 
typological gradients are not real in the sense of their representing a feature 
of the transmission process. 
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Figure 4.11.   The plot of cell assemblages from the horizontal and vertical transects in the typological 
space defined by the first two CA axes.
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Moreover, when the simulated space is square, the direction of the typological 
gradient is in a dynamic equilibrium. Due to constant cultural transmission, 
the typological gradient will actually oscillate in its alignment between the di-
agonals of the square. There will be transitional periods when the typological 
gradient will align with some of the sides of the square. This is clear from the 
graph, where the absolute value of the linear correlation coefficient between 
the first CA axis and the major spatial direction is shown at different times 
during the simulation history that lasts for 4000 iterations23 (Figure 4.12). 
The value of the correlation oscillates between approximately 1, indicating the 
alignment of the typological with the major spatial gradient, and approxi-
mately 0.7, indicating the transition of the gradient direction, when the typo-
logical gradient is more in line with one of the sides of the study area rectangle 
than with the diagonal. This effect may also have to do with the fact that in the 
technical setup of the simulation not all directions are equally likely from the 
perspective of a single cell – the cells on the cardinal directions (in the rook 
neighborhood) are more likely candidates for the interaction, as the distance 
between cells is calculated as the simple Euclidean distance, and so the cells on 
the diagonals are more distant than the ones on the cardinal directions. 

23  When the principal component analysis (PCA) is applied to the spatial coordinates of the cells, which 
form the rectangle, the PCA 1 and PCA 2 dimensions will actually represent the diagonals of the rect-
angular study region, as these are the two major spatial directions of a square. CA 1 may align with 
the first or the second diagonal. The linear correlation coefficient is calculated for both diagonals 
at certain points in time (with time-averaging, using the interval of 50 iterations), and I take the 
absolute value of the higher coefficient value as indicative of the current relation between the major 
typological and spatial directions (the absolute value is taken in order to disregard the directionality 
of the relation, which is irrelevant in this context). 
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Figure 4.12.  The temporal dynamics of the shift of the CA 1 gradient direction between the diagonals 
and the side of the rectangle as measured by the absolute value of Pearson’s linear corre-
lation coefficient between the major spatial direction (the diagonal) and the CA axis 1 for 
the neutral transmission model. The upper panel is for the low interaction scenario (Ex-
periment 4.1), the low panel is for the high interaction scenario (Experiment 4.2).
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4.3.  THE CONFORMIST MODEL

The conformist model is one of the frequency dependent models of cultural 
transmission (Boyd & Richerson 1985; Lycett 2015a). Unlike the neutral trans-
mission model, in which the probability of copying a trait is proportional to its 
frequency, the conformist transmission model assumes that the most common 
variants are more likely to be copied than their frequency would suggest. This 
model is inherently social, as individuals are making their choices in reference 
to the choice made by the majority of the population. Conformist transmission 
can be illustrated by many examples where people show a tendency to con-
form by choosing the most common cultural trait in the population (cultural 
practices, fashion choices, social attitudes etc.) The degree of conformism in 
the population can be conceptualized as the probability that an individual will 
behave in a conformist manner and copy the most frequent variant. This al-
lows us to explore the implications of different degrees of conformism. 

The conformist model can be derived from the neutral transmission mod-
el setup by specifying that a certain proportion of individuals will choose 
the most frequent variant in the systemic population, rather than randomly 
choosing on the basis of the variant frequency structure. The technical imple-
mentation is identical to the way that conformist transmission is simulated 
in Porčić (2015), except for the fact that the simulations in this book do not 
assume non-overlapping cultural generations. Namely, in the simulation of 
the conformist model, each agent has four options when it has to decide about 
the variant of the item: 1) copy the most frequent variant from the current set 
of variants, with probability equal to conf (probability or degree of conform-
ism); if there are two or more modal variants, the choice between them will 
be random; 2) introduce a completely new variant (mutation) with probabil-
ity equal to ν; 3) copy a variant from another cell with probability equal to m; 
4) randomly copy a variant from another individual from the same cell with 
probability 1 − ν  – m – conf. It should be emphasized that there are other possi-
bilities for modeling the conformist transmission (e.g. Crema et al. 2016), and 
the results may be different for other conceptualizations of this model.

The initial setup is the same as for the first simulation experiment with the 
neutral transmission (population size = 100, mutation rate (ν) = 0.005, prob-
ability of interaction (m) = 0.1, average item use-life = 2 iterations, with ini-
tial systemic assemblages for each cell being created by randomly sampling 
100 items from a uniform distribution of 10 variants). In this configuration 
all cells start with similar assemblages, with only stochastic differences due 
to sampling. This initial moment would be equivalent to an anthropological 
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situation where a migration has just occurred and the population is still not 
yet culturally structured. Again, I will simulate time-averaging by aggregat-
ing cell assemblages from 50 consecutive iterations into a single assemblage 
from each cell, and use the same statistical tools to analyze the patterns. I will 
experiment with two scenarios. In both scenarios the degree of conformism is 
set to 20%. The first scenario is a low interaction scenario (m = 0.1), where in 
each transmission episode the probability of copying a variant from a differ-
ent cell is 10%. The second scenario is a high interaction scenario where this 
probability is raised to 30% (m = 0.3). 

4.3.1. Low interaction conformist model scenario with 20% degree of 
conformism (Experiment 4.4)

Figure 4.13 shows the configuration of the typological space after 50 iterations 
based on the first two CA axes, which account for 9.6% of inertia, as well as 
the CA axis 1 and 2 scores plotted in space. The results of the CA analysis sug-
gest that there are four groups of cells which are typologically similar, but that 
their distribution in space is random – there is no clear tendency for typolog-
ically similar cells to create clearly delineated spatial blocks. 
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Figure 4.13.  The configuration of the cell assemblages in the typological space defined by the first two 
CA axes (the first column of panels), and the plot of CA 1 and CA 2 scores for each cell in 
space (the second and third column) at different time points, with time-averaging, for the 
low interaction conformist transmission scenario (Experiment 4.4).
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The lack of spatial patterning is also suggested by the low values of the cor-
relation between the typological BR distances and spatial distances (Table 4.2, 
Figure 4.14). However, the correlation between Jaccard and spatial distances 
is by an order of magnitude higher, suggesting that there is a low correlation 
between typological distances (based on the presence and absence of types) 
and spatial distances, over short range (Table 4.2, Figure 4.14).
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Figure 4.14.   The typological (as measured by BR or Jaccard distance) vs. spatial distance between 
time-averaged cell assemblages at different times, for the low interaction conformist 
transmission scenario (Experiment 4.4).
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We can see that there are now two main groups of typologically similar as-
semblages in the CA space (Figure 4.14). The assemblages are dominated, ba-
sically, by two variants with percentages of ~85%, and ~15%, whereas other 
variants are present with only one instance or a few instances. Therefore, we 
have a large group of assemblages where the ratio between the two of the 
original ten variants (variants 4 and 6 in this case24 - but this is purely a re-
sult of chance) is approximately 85:15, and another group where this ratio is 
approximately 15:85. The distributions of relative frequencies of types 4 and 
6 in space are almost mirror images of each other (Figure 4.15), and are re-
markably similar after 500 and after 1000 years, suggesting that this is the 
equilibrium configuration. The spatial pattern of typological differences and 
similarities is the same as 450 iterations before. We can see that assemblages 
are either very similar or very different based on the bimodal distribution of 
BR distances (Figure 4.14). In order to check if the equilibrium with only two 
variants is the only one, I repeated this particular scenario 30 times, and I 
looked at the distribution of variant frequencies in the assemblage consisting 
of aggregated assemblages from the year 950 to the year 999. It turns out that 
two equilibrium states are most probable: 1) The one I have just described, 
where two variants stand out with large frequencies and most assemblages 
have ~85% and ~15% of these two dominant variants, accompanied by rare 
variants – 9 out of 30 simulations had this outcome; 2) The equilibrium state, 
where all simulated assemblages in the region are dominated by one variant 
(with ~97% on average) and accompanied by rare variants – 21 simulations 
were single-variant dominance outcomes. 

24  There is nothing special about these particular variants. It was solely by chance they happen to be 
the ones that were increased to large frequencies. If we repeat this simulation scenario many times, 
other original variants will rise to high frequencies, but the general pattern will always be the same. 
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Figure 4.15.   The relative frequency of two dominant types across the study region after 550 and 1000 
iterations of the low interaction conformist model (Experiment 4.4). 

4.3.2. High interaction conformist model scenario with 20% degree of 
conformism (Experiment 4.5)

In the high interaction scenario, the process always results (based on the 30 
repetitions) in the dominance of one of the original variants. In the simula-
tion outcome presented here, after 500 iterations, all assemblages are already 
dominated by a single type with frequency ~97%. This is the stable value which 
does not change through time, and the entire space is typologically uniform, 
dominated by the single type. The local differences are due to differences in 
rare types.

If we fast forward to 950-999, only one variant remains dominant in the en-
tire region with ~97.5%, but the spatial structure of typological similarities 
and differences remains practically the same as 450 years before. The typo-
logical differences as measured by the BR coefficient are extremely small (the 
mean BR distance is 5.6), as all assemblages in the simulated study are domi-
nated by the same type. The clear spatial structure deriving from the distribu-
tion of the rare types reflecting the isolation by distance process is detectable 
only with the Jaccard coefficient (the mean Mantel correlation between spatial 
and Jaccard distances is 0.36). 
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How can we interpret this result? As all assemblages start with the same spec-
trum of variants, the frequencies of a small number of the originally present 
variants are amplified by chance and conformist behavior in the first iter-
ations. Solely by chance, the same variant can become dominant in several 
cells. Once a variant becomes dominant, its frequency will increase by the con-
formist process. Fixation will never occur, because of the mutations and some 
degree of spatial interaction that can introduce some other variant. The spatial 
structure reflecting the isolation by distance will be visible only in the spatial 
distribution of the rare variants. Alternatively, chance may have it that two 
variants rise to high frequencies in the region instead of only one.

In the more likely outcome of a single variant dominance, a researcher look-
ing at the distribution of the artifact types would see incredible uniformity 
over a large area. In the less likely variant, a researcher would see two kinds 
of assemblages with a steady ratio of two dominant types. In a more realistic 
scenario, our hypothetical researcher would only have a small sample of each 
assemblage – even if he had a random sample of 5% for each assemblage, in 
most assemblages he would only find a single variant or two dominant var-
iants; therefore the spatial structure arising from the rare variants would be 
lost – e.g. in one simulation we run, the Mantel correlation falls from 0.07 for 
a full population to 0.02 for a 5% sample. 

The values of the Mantel correlation support this general picture of the weak 
spatial structure (Table 4.2). They are generally very low and not statistically 
significant. Only the correlations bases on the Jaccard distances are slightly 
higher, but still generally low compared to the neutral model.
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Degree of 
interaction

Accumulation 
interval

Mantel correlation 
(BR distance vs. 
spatial distance)

Mantel correlation 
(Jaccard distance vs. 

spatial distance)

CA axis 
1 inertia

CA 
axis 2 
inertia

Low  
(m = 0.1)

1-50
0.004  

(min = -0.04;  
max = 0.05)

0.03  
(min = -0.01; max = 

0.08)
6.5% 3.1%

501-550
0.007  

(min = - 0.03;  
max = 0.06)

0.2  
(min = 0.08;  
max = 0.26)

5.9% 5.7%

951-1000
0.0004  

(min = -0.06;  
max = 0.05)

0.17  
(min = 0.06;  
max = 0.25)

5.9% 5.7%

High  
(m = 0.3)

1-50
0.02  

(min = -0.03;  
max = 0.05)

0.13  
(min = 0.06;  
max = 0.23)

4.8% 2.%

501-550
0.03  

(min = -0.01;  
max = 0.18)

0.36  
(min = 0.32;  
max = 0.38)

0.6% 0.6%

951-1000
0.05  

(min = -0.04;  
max = 0.41)

0.36  
(min = 0.33;  
max = 0.38)

0.7% 0.6%

Table 4.2.  The mean, minimum, and maximum Mantel correlations between typological and spatial 
distances for the high and low interaction scenarios of the conformist model (probability 
of conformism 0.2), based on the 30 simulation repetitions.

4.3.3.  The conformist model scenario which starts with a spatial 
structure – space divided into two cultural regions  
(Experiment 4.6)

These observations and conclusions are only valid in respect to the initial 
conditions where all initial assemblages were identical. What would happen 
if we had a spatial structure to begin with? I will examine the case where a 
sharp cultural boundary (defined by the material culture) already exists from 
the beginning of the simulation. The initial situation is such that half of the 
cells in the region start with identical assemblages (a simple random sample 
from a set of ten equally probable variants), whereas the other half starts with 
identical assemblages with a different composition – the initial assemblage is 
randomly sampled from a set of nine variants different from the variants of 
the first group of cells, and one shared variant. The two groups are perfectly 
clustered spatially, with each group forming a spatial block that occupies ex-
actly one half of the simulated space (Figure 4.18). The transmission setup is 
the same as in the Experiment 4.4, assuming a low interaction (m = 0.1) and 
degree of conformism of 0.2.
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First, we can see that when we perform a CA analysis the two cultural regions 
are clearly distinguished on the first CA axis, and the cells have extreme scores 
on the CA axis 1 corresponding to their respective initial groups (Figure 4.16). 
500 iterations of conformist transmission later, when we look at the cell as-
semblages from the time interval 501-550 years summarized by the CA, we 
can see that the original cultural boundary persists through time (Figure 4.16). 
Gradients are visible within blocks, and they are oriented towards the bound-
ary line dividing the study region into subregions. The graph in Figure 4.16 
suggests that there is some mixing in the boundary area, as the CA 1 scores are 
more similar to each other in the boundary regions compared to the hinterland 
regions, but the spatial boundary is clear and sharp. This boundary persists 
in an unchanged form even after 4000 years (Figure 4.16 shows the situation 
after 1500 iterations).
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Figure 4.16.  The CA axis 1 scores plotted in space for the low interaction conformist model transmis-
sion for the case in which there are two distinct cultural regions to begin with (Experiment 
4.6).
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4.3.4.  The conformist model scenario with initial population structure but 
lower degree of conformism (Experiment 4.7)

What would happen if the degree of conformism was lower, e.g. 5%, and we 
started with two distinct cultural regions, as in the previous experiment? In 
Figure 4.17 we can see the situation as summarized by the CA analysis. The 
boundary between the two regions becomes less sharp as time goes by. It re-
mains visible and it shifts towards one of the cultural regions as the variants 
from one cultural region are becoming dominant. After 2000 years (1951-2000 
interval) the boundary disappears and the entire region is typologically uni-
form. Therefore, a lower degree of conformism does not allow the cultural 
boundary to persist for long, and it also amplifies the effect of drift, leading to 
the dominance of a small number of types. This is an intuitive result, because 
in each transmission event there are more agents who copy from other cells 
than agents who behave in a conformist manner, so the initial structure is 
destroyed quickly. This occurs because the probability of interaction between 
cells is greater than the probability of conformist behavior in this case.
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Figure 4.17.  The CA axis 1 scores plotted in space for different temporal intervals for the low interac-
tion conformist scenario with 5% degree of conformism (Experiment 4.7).

4.4.  THE AXELROD MODEL

The main motivation for the research in this chapter was to explore the spa-
tio-typological implications of cultural transmission models in order to un-
derstand better what can stand behind the phenomena of archaeological cul-
tures. But in traditional archaeology, archaeological cultures are more than 
just patterns of material culture in space – they are thought of as reflections 
of some kind of population structure (e.g. reflecting group identities or po-
litical entities) (Shennan et al. 2015; Shennan 1994; Roberts & Vander Linden 
2011). None of the models I have explored so far has this particular social 
ingredient. One may argue that the conformist model is inherently social, 
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as the choice of conforming to the majority is par excellence a social act; but 
this has only a local effect, as the agents conform to the majority in their 
own cells, and there is nothing in the model that addresses group identity or 
structure.

The Axelrod model is a cultural transmission model that seems to fit some of 
the basic intuitions of cultural historians about group formation (or ethno-
genesis) and persistence. The model was formulated and implemented as an 
agent-based computer simulation by Robert Axelrod, in order to explain sev-
eral anthropological and political phenomena related to social cohesion and 
conflict, and the persistence of cultural boundaries (Axelrod 1997). The model 
is very simple. The cells are arranged into a grid. Each cell is equivalent to 
a local community (or homogenous village, as Axelrod calls it, since he as-
sumes that all individuals in the cell have identical cultural traits); and each 
possesses its own cultural characteristics. The cultural characteristics of each 
cell are modeled as ordered vectors of integers. Each element of the vector 
represents a specific cultural dimension, e.g. the first element may be lan-
guage, the second, marital residence pattern, the third, religion etc. Each of the 
vector elements can have one of the potential traits (values) associated with 
the particular cultural dimension. The cells are the basic units (agents) in the 
model. A cell picked at random chooses another cell to interact with within its 
radius of interaction (as limited to its immediate neighbors). The probability 
of choosing a cell is proportional to the current level of similarity between the 
two cells. When the two cells interact, the active cell will copy the value of one 
of the cultural dimensions from the chosen cell, making the two cells even 
more similar than before. If the similarity between two cells is below a certain 
threshold (e.g. if they are different in all or most dimensions), they will not 
interact at all. 

The core principle of the model is that people preferentially interact with cul-
turally similar people and tend not to interact with culturally different people. 
This is the concept of homophily which, it can be argued, is one of the ma-
jor factors of group formation and maintenance, and which can lead to the 
formation of a population structure in space (Shennan et al. 2015). Axelrod 
demonstrated with simulations that this model produces a varying number 
of spatially bounded clusters of cells, cultural regions, which are discrete and 
have permanent boundaries (Axelrod 1997). A spatial mosaic of distinct and 
completely different cultural regions can emerge from a simple set of princi-
ples characterizing the Axelrod model, with the principle of homophily being 
the central one, as it models the essence of interactions driven by the group 
identity. This is why this model was quickly recognized as highly relevant 
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for modeling ethnic structure and group formation in archaeology (Drost & 
Vander Linden 2018; Kovacevic et al. 2015)25.

In this section I will present the Axelrod model that I adapted for the purpos-
es of this study. The Axelrod model is implemented by modifying the neutral 
model of transmission in the following way. Individual cells are interpreted 
as local groups. When the individual agent from a cell chooses to copy the 
variant from another cell, the choice of the target cell will be influenced both 
by the geographic distance and the current level of cultural similarity between 
the two cells as measured by the Brainerd-Robinson coefficient. This is im-
plemented by converting the geographic and typological similarity matrices 
for each pair of sites into probabilities of interactions, and multiplying them 
in order to obtain a new matrix of interaction probabilities. The choice of the 
target cell for each agent from each cell will be stochastically determined ac-
cording to this matrix, which is updated in each iteration. Only the cells for 
which the similarity level with the focal cell is above 100, as measured by the 
rescaled Brainerd-Robinson similarity measure (which goes from 0 to 200), 
are included in the set from which the target cell is chosen. When the target 
cell is chosen, a random agent will be selected as a model from which to copy a 
variant, as in the simple neutral transmission setup. Therefore, in addition to 
the spatial distance, the individual also takes into account the current level of 
similarity between his own group and other groups when choosing the group 
(cell) from which to copy a variant. If this level of similarity is below a certain 
threshold, the interaction is not possible, regardless of the spatial distance 
between the groups.

This version of the Axelrod model includes drift into the model, as the process 
of neutral transmission is occurring within each cell. Axelrod (1997: 221) stat-
ed that to include the drift into the model would be an interesting extension, 
and this is precisely what I did here, primarily in order to model the trans-
mission at the individual rather than the group level. I do not assume that 
cells are culturally homogenous villages, as each cell contains a population of 
items. Additionally, the version of the model in this study is different from the 
original model, because only one cultural dimension is modeled (e.g. the sim-
ulated pottery type), and we are not looking at the composition of the living 

25  It should be emphasized, however, that the Axelrod model captures only one aspect of the complex 
process of group formation and collective identity (see Barth 1998). The process of group formation 
necessarily entails political integration, which has more to do with the socio-economic structure 
rather than the degree of shared stylistic features. In other words, political integration is certainly 
influenced by interactions between individuals and groups which may be initially driven by the prin-
ciple of homophily (especially when it comes to language), but this is not sufficient to explain the 
group formation process. Therefore, when we use the Axelrod model as a model for group formation, 
the underlying political, social and economic process remains a black box. 
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assemblages, but at time-averaged assemblages in the simulated archaeolog-
ical record where the deposition rate is governed by the average use-lives of 
objects. 

4.4.1.  The Axelrod model with all assemblages being identical at the 
start and the homophily threshold set to 50%, low interaction 
(Experiment 4.8)

I will start exploring the Axelrod model with the standard simulation setup 
used for the neutral model low interaction scenario (for the parameter setup 
see Table 4.3). I only show the typological vs. spatial distance graph here (Fig-
ure 4.18), as the CA plots are not so useful in this case, for reasons that will 
soon become clear. After 100 years (time-averaged assemblages from the in-
terval between 51 and 100 iterations), the situation is such that approximately 
half of the cells cannot interact with each other, as the pairwise BR distances 
are above 10026 (Figure 4.18). After 500 years, the number of pairs which can 
interact is even smaller – we can clearly see how the cells are divided into two 
groups below and above the interaction threshold (100 BR distance). The trend 
of typological divergence is evident from Figure 4.18, which shows that as time 
goes by, more and more of the pairwise distances go beyond the interaction 
threshold (the BR similarity/distance of 100). After 1000 iterations (aggregated 
assemblages from iterations 951-1000), the situation is such that the distance 
between a majority of pairs of cells is maximal or almost maximal, regardless 
of the spatial distance. The pairwise typological distances below the interac-
tion threshold still keep the weak correlation with the spatial distance, but 
their number decreases as more and more cells diverge beyond the interac-
tion threshold. The initial situation of uniformity of assemblages is destroyed 
quickly by drift within cell assemblages. The cells share so few variants that 
the variation cannot be successfully represented in the lower dimensional 
space. The weak spatial structure which emerges is quickly destroyed by the 
divergence of cell assemblages.

26  It should be noted that the current level of similarity/distance between cells is based on living (sys-
temic assemblages), whereas the graphs presented in the figures refer to archaeological assem-
blages. But as the archaeological assemblages from each iteration are random samples of systemic 
assemblages, the BR similarity/distance coefficients based on the archaeological assemblages are a 
reasonable proxy for the same variable in the systemic assemblages.
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Figure 4.18.  Typological (Brainerd-Robinson) vs. spatial distances in different time intervals for Exper-
iment 4.8

4.4.2.  The Axelrod model with all assemblages being identical at the 
start and the homophily threshold set to 50%, high interaction 
(Experiment 4.9)

In this experiment, the simulation setup is the same except for the degree of 
interactions between cells. In this experiment, I explore what happens if the 
interaction is higher, i.e. if the probability of interaction is increased to 30% 
(Table 4.3). The evolution of the spatial patterns is complex in this case, as two 
processes seem to be running in parallel, with one being dominant in the long 
run (Figure 4.19). The first process leads to the standard isolation by distance 
pattern, as seen in the experiments with the neutral model. The gradient of 
typological similarity forms along the diagonals of the square grid. But this is 
only pertains to the cell pairs which are above the similarity threshold nec-
essary for the interaction. At first, all of the cell pairs can interact with each 
other, as their assemblages are all identical to begin with; but as time goes by, 
more and more cell pairs “leave” this block of interacting cell pairs, as their 
assemblages drift away from each other. We can see how isolation by distance 
loses importance by looking at the distribution of the different CA axes scores 
in space. For example, after 50 years, the CA axis 1, which captures the largest 
percent of variance, forms a gradient in space along the diagonal (Figure 4.20). 
However, after 500 years, this spatial pattern is captured by the second CA 
axis, which captures less variance than the first (Figure 4.20). This is so be-
cause the dominant dimension of variability becomes the one which separates 
the non-interacting cells from each other.
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Figure 4.19.  Typological (Brainerd-Robinson) vs. spatial distances in different time intervals for Exper-
iment 4.9.
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Therefore, in the long run, the behavior of the system is such that it will even-
tually lead to the same outcome as in the previous experiment – the correla-
tion between typological and spatial distances will disappear as cells diverge to 
the degree that they cannot interact any more. In the high interaction scenar-
io, it takes more time for this to happen, so the isolation by distance pattern 
is present for a long period of time, although it slowly vanishes. Here, we can 
see that even after 2000 years, there is a spatial structure in the form of the 
isolation by distance pattern for a subset of cell pairs. 
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Figure 4.20.   The plot of CA 1 scores for each cell in space after 100 iterations (left panel), and the plot 
of CA2 scores for each cell after 500 iterations (right panel) of the Axelrod model Experi-
ment 4.9. 

4.4.3.  The Axelrod model with two cultural regions at the beginning, and 
the homophily threshold set to 50%, low interaction  
(Experiment 4.10)

In this experiment I explore the low interaction Axelrod model scenario (pa-
rameters as in Experiment 4.8) but with different initial conditions (Table 4.3). 
In this scenario the population structure is present from the very beginning 
– the region is divided into two halves, in two distinct cultural regions. The 
cells in both regions start with identical assemblages (a simple random sample 
from a set of ten equally probable variants). The initial assemblages from the 
two regions have only one variant in common. In Figure 4.21, we see that after 
100 years the population structure is still intact – the two cultural regions are 
clearly discernible in both the typological and geographical spaces. However, 
after 500 iterations, the evolution of the system is similar to the case when 
all cells start with identical assemblages (Figure 4.21). Intuitively, one would 
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expect the Axelrod model to conserve the initial situation with two distinct 
stylistic regions, just as the conformist model does; but what happens is the 
same as in the case of the Axelrod model scenario, when all cells start with dif-
ferent assemblages. The drift causes cell assemblages to diverge rapidly, and 
when the similarity falls below the threshold, no further interaction is pos-
sible. The same process which unfolded in the previous experiments unfolds 
in this case as well, and the result is a mosaic of different cell assemblages in 
space with no clear population structure at all. 
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Figure 4.21.  Typological (Brainerd-Robinson) vs. spatial distances in different time intervals for Exper-
iment 4.10.

4.4.4.  The Axelrod model with two cultural regions at the beginning, and 
the homophily threshold set to 50%, high interaction  
(Experiment 4.11)

In the next experiment, I start with the same setup as in the previous one, 
with two distinct cultural regions in the beginning, but I increase the degree 
of intercommunity interaction to 0.3 (see Table 4.3). The resulting patterns 
are more complex than in the previous experiments, but the main evolution-
ary trend is basically the same – the divergence of cell assemblages until they 
cannot interact any more. Figure 4.22 suggests that cell pairs cluster in two 
main groups – those which can and those which cannot interact. But we can 
see that the distribution of the typological distances is actually multimod-
al – there are many cell pairs which have BR distances above the interaction 
threshold (i.e. they cannot interact any more), but are not at the extreme end 
of the scale. These are assemblages which are in the process of drifting away 
completely. 
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Figure 4.22.  Typological (Brainerd-Robinson) vs. spatial distances in different time intervals for Exper-
iment 4.11.
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If we look more closely at what happens here, we will notice one major differ-
ence between this scenario and the previous ones – the initial spatial structure 
of material culture is preserved in the 2000 years/iterations of the simulation 
run. This may not be obvious from Figure 4.22, but it is clearly detectable 
if we look at the results of the CA (Figure 4.23) and especially the results of 
the cluster analysis (Figure 4.24). After the first 100 iterations, the first CA 
axis captures the distinction between the two original cultural regions (Figure 
4.23). After 500 iterations, this structure is visible on CA axis 4, and after 1000 
iterations on CA axis 10. As time goes by, the typological distinction between 
the two original cultural regions moves to higher CA dimensions. This is be-
cause the dominant axis of variance becomes one which separates the cells 
which drifted away completely from the rest of cells. 
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Figure 4.23.  The plot of CA 1, CA 4, and CA 10 scores for each cell in space after 100, 500 and 100 
iterations, respectively, of the Axelrod model Experiment 4.11. 

The results of the cluster analysis show clearly how the spatio-cultural struc-
ture is preserved through time. Figure 4.24 shows the three-cluster solution 
which seems to make most sense based on the dendrogram. We can see that 
there are two clusters which contain most of the cells of each original cultural 
region, and the cells belonging to the third cluster are interspersed within 
the spatial boundaries of the two more numerous clusters. The third cluster 
consists of cells which diverged beyond the interaction threshold, and we can 
clearly see that their number increases through time. We can also see that the 
average distances at which the subclusters of the third cluster form are high-
er than the average distances within clusters 1 and 2, and this is because the 
cells which belong to this third cluster have diverged from each other. So, we 
have three clusters – two major clusters with truly similar cell assemblages 
corresponding to the initial cultural situation, and the third cluster with dis-
similar assemblages, which belong to the same cluster only by virtue of being 
completely different from the cells of the first two clusters.
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Figure 4.24.   The results of the cluster analysis (Ward’s method) performed on BR distances at differ-
ent intervals in time for the Experiment 4.11.

So this scenario, although its results seem different, is basically just the slow 
motion version of the previous scenarios. The high level of interaction com-
bined with the initial spatio-cultural structure only makes the process of di-
vergence slower. However, in practice i.e. on a realistic time scale, this scenar-
io preserves the initial cultural conditions in a recognizable form, at least for 
the first two thousand years.

4.4.5.  The Axelrod model with two cultural regions at the beginning, and 
the homophily threshold set to 20%, low interaction  
(Experiment 4.12)

In this experiment, I explore the effect of decreasing the homophily threshold. 
The experimental setup is the same as in Experiment 4.10 (two distinct cul-
tural regions), but the homophily threshold is set to the lower value – the two 
cells will not interact only if the BR similarity between them is lower than 20 
(0.1 when rescaled to a zero-to-one scale) (Table 4.3). 

In this scenario, the initial structure is destroyed quickly and after 500 years, 
isolation by distance pattern emerges (Figure 4.25-4.26). However, the diver-
gence of cell assemblages due to drift takes over at some point, so we again 
have pairs of cells which cannot interact anymore and pairs of cells which can, 
and the spatial structure is the isolation by distance pattern – the gradient of 
typological distance along the diagonal. This is clearly reflected in the typo-
logical vs. spatial distances graph, as we can see this correlation pattern in the 
subset of pairs of assemblages which can interact. 
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Figure 4.25.   Typological (Brainerd-Robinson) vs. spatial distances in different time intervals for Exper-
iment 4.12.

Decreasing the homophily threshold has the same effect as increasing the de-
gree of interaction – it slows down the divergence of the cells. In addition, it 
works against preserving the initial structure. What would happen if the inter-
action threshold was set to extremely high values? With the benefit of hind-
sight from the previous experiments, we can easily deduce the consequences. 
The increase of the homophily interaction threshold would accelerate the di-
vergence of the cells, as even small changes in the structure of assemblages 
would make further interaction between cells impossible.
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Figure 4.26  The plot of CA 1 scores for each cell in space after 100 iterations (left panel), and after 500 
iterations (right panel) of the Axelrod model Experiment 4.12. 
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4.5.  THE EFFECTS OF SAMPLING

For all of the simulation experiments presented in this chapter the assumption 
was that the entire archaeological record – 100% of cells and 100% of assem-
blages - was available for analysis. This would correspond to a situation where 
every single site from a particular period and region was excavated entirely, 
and that all items of a particular artifact class were recovered and available for 
analysis. This is apparently an unrealistic assumption, but my primary aim 
has been to explore the spatial implications of cultural transmission at the 
theoretical level. However, the question related to the sampling effects is rel-
evant for the practical applications of the theory. The main question is: would 
any of the presented patterns be detectable from samples, if only a fraction of 
cells and a fraction of cell assemblages were available for the analysis, as is the 
case in the real world? This question is easy to answer in general, but difficult 
to answer in particular. If the patterns are strong (e.g. clear spatial gradients, 
high correlation between spatial and typological distances), then we should be 
able to detect them from small samples. If not, then the small samples would 
only reveal noise from the sampling error – no spatial patterns would be dis-
cernible. This is the general answer to the question, and quite easy to deduce 
from the basic statistics – the stronger the effect size, the more likely it is 
to be detected from small samples. However, the particular question would 
be what is the sample size required to detect the patterns given the specific 
parameter combinations? This question can easily be answered by using the 
simulation framework presented in this book. It is not my intention to go in 
this direction, so I will only provide some illustrations for some of the scenar-
ios that were presented earlier in this chapter. 

For example, if we only had a sample of 10% of excavated cell sites (assuming 
that in the center of each cell is a single settlement) and 100% of each site was 
excavated, the gradient would still be detectable in some of the samples. Fig-
ure 4.27 shows the scores of the CA axis 1 plotted in space based on the aggre-
gated assemblages from 751 to 800 iterations from the low interaction neutral 
model (with the standard setup of Experiment 4.1 described at the beginning 
of the chapter). The typological gradient is clear along one of the major diag-
onals of the study area. 
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Figure 4.27.   The effects of sampling on the detectability of the typological gradients in space. On the 
left, the plot of the CA axis 1 scores for the low interaction neutral model is presented for 
the aggregated assemblages from 751 to 800 iterations. The plot on the right shows the 
same thing for the random sample of 40 (10%) cells, but with complete (100%) assem-
blages.

When we take a 10 percent sample of the cells and perform CA on the entire 
assemblages from these cells, the gradient is still clearly visible. Even if we 
take random samples of only 10% from each of these assemblages and per-
form CA, the gradient is visible in most of the samples (2 out of 3 in this case, 
see Figure 4.28). 



114

Chapter 4

Longitude

LongitudeLongitude

Longitude

La
tit

ud
e

La
tit

ud
e

La
tit

ud
e

La
tit

ud
e

CA axis 1 scores

CA axis 1 scores

10% samples of cells 
from the study region 
with 10% samples of 
cell assemblages

Figure 4.28.  The effects of sampling on the detectability of the typological gradients in space. On the 
left, the plot of the CA axis 1 scores for the low interaction neutral model is presented for 
the aggregated assemblages from 751 to 800 iterations. The plot on the right shows the 
same thing for the three random samples of 40 (10%) cells, where each cell is represented 
by the 10% random sample of the assemblage.

4.6.  DISCUSSION 

More than 40 years ago, Stephen Shennan gave an impressive empirical 
demonstration of the inadequacy of the archaeological culture concept both 
as an observational and interpretational unit in prehistoric archaeology. He 
was able to show, by using quantified data on material culture traits of the Bell 
Beaker culture graves from Central Europe, that there was no homogenous 
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Bell Beaker culture27, but an underlying complex spatial pattern of variability 
of different traits (Shennan 1978). However, there was a clear spatial pat-
tern in this variation. Most of the trait frequencies studied by Shennan have 
a clinal distribution along the main spatial axis, just as we would expect from 
the isolation by distance model. These frequency clines are analogous to the 
typological gradients from the simulation results. Therefore, the patterns of 
Bell Beaker material culture variability closely resemble the patterns produced 
by the baseline neutral transmission model coupled with isolation by distance. 
But this is only one example. 

The simulations presented in this chapter show that different models of cul-
tural transmission may or may not produce spatial structuring of the formal 
variation of the material culture. Some of the simulation results were quite 
predictable, particularly for the neutral transmission, as this is the classic iso-
lation by distance pattern which has been known in biology for decades. How-
ever, the results presented here are interesting because they represent illus-
trations for the specific parameterizations of the isolation by distance model 
chosen to reflect roughly the conditions of a generic preindustrial (prehistoric, 
to be more precise) demographic and cultural situation in realistic temporal 
and spatial frames. These simulations show that the neutral model, which 
assumes nothing but random (unbiased) copying and interactions conditioned 
exclusively by geographic distance, can produce very strong spatial patterns. 
The nature of typological variation in space produced by this model is contin-
uous. The typological landscape gradually changes along the spatial dimen-
sions. This means that there are no discrete spatio-typological groups and 
no clear boundaries between them. But if we look only at the extremes of the 
study area, and/or if we insist on imposing division into groups by applying 
some kind of formal or informal cluster analysis, we will see what we want 
to see – different groups. This picture would be objective in some sense (as 
assemblages from one part of the map may have little or nothing in common 
with assemblages from another part of the map), but it would be a great error 
to interpret such spatial clustering in the ways that archaeological cultures 
are often implicitly or explicitly interpreted – as reflections of discrete social, 
political or ethnic groups. The simulations clearly show that a model which 
assumes no group structure and localized interactions can give rise to such a 
pattern. 

27  It is a Late Neolithic and Early Bronze Age phenomenon (depending on the area) dated broadly be-
tween 2900/2800 and 2000/1900 BC (Milisauskas & Kruk 2011). In traditional European prehistoric 
archaeology, the Bell Beaker phenomenon was seen as an archaeological megaculture. 
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Moreover, we can see that the spatial directions of typological gradients are 
arbitrary and dependent on the shape of the study area. The two main patterns 
indicative of this model are: 1) the presence of a typological gradient along the 
major spatial direction of the study area 2) the typological gradient changes 
directions when we change the shape of the study area (in practice, when we 
include more sites, or take a subsample of the original set of sites, in such a 
way that the direction of the longest spatial axis is changed). 

Surprisingly, the Axelrod model, when coupled with drift and interactions de-
termined by spatial distance, and quasi-realistic parametrization, does not 
produce spatially and typologically distinct groups of communities. The re-
sult is always a mosaic of different, usually one-cell, microcultures randomly 
scattered across the map. Moreover, simulations based on the Axelrod model 
cannot conserve the initial population structure in the long run. The process 
of divergence can be slowed down under certain circumstances, such as high 
intercommunity interaction and a low homophily threshold for interaction. 
When the degree of interaction is high, the initial spatio-cultural structure can 
be conserved for long periods of time (e.g. for at least 2000 years), so for all 
practical purposes the Axelrod model can conserve the initial cultural situation 
under such conditions.

The only model that produces clear typological boundaries and population 
structure in space is the conformist model, when space is partitioned into dif-
ferent cultures to begin with. If not, the conformist model also produces a 
mosaic of distinct cell assemblages dominated by one or two types, a situation 
that is rarely if ever encountered in reality. Some spatial structure is detecta-
ble, but only when rare types are included. 

How do the results of the simulation compare with ethnographic and ethnoar-
chaeological studies that focus on the spatial patterns of material culture and 
the relation of the patterns to the social world? Perhaps the most famous case 
where isolation by distance is seen as the main factor that structures material 
culture variability in space is the study by Welsch et al. (1992). The statistical 
analysis of variability in assemblages of material culture obtained by ethnog-
raphers at different villages on the North Coast of New Guinea at the begin-
ning of the 20th century indicated that similarities and differences among 
these assemblages are most strongly associated with geographic propinquity, 
irrespective of linguistic affinities. The author concluded that “the similarities 
and differences we find among these village assemblages are most strongly 
correlated with geographic propinquity, irrespective of linguistic affinities” 
(Welsch et al. 1992: 568). In a reanalysis of the Welsch et al. data, Moore and 
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Romney (1994) concluded that language had a significant role in the structur-
ing of material culture variability. Similar conclusions were reached by Shen-
nan and Collard (Shennan & Collard 2005). The conclusion of Terrel’s (2010) 
recent re-analysis of the material culture of the northern coast of New Guin-
ea is that isolation by distance is the main factor structuring the patterns of 
material culture variation in space (see also von Cramon-Taubadel & Lycett 
2018). However, the data analyzed by these researchers are not data on stylis-
tic variation – they are the data on presence and frequency of different classes 
of material culture, rather than data on the variation within a functional class. 
In order to further investigate these issues, Fyfe (2009) focused on the formal 
variability within the two classes, arrows and string bags. The results of Fyfe’s 
analysis also suggest the main role of isolation by distance as the crucial fac-
tor behind the formal variability of material culture. The main dimension of 
typological variation is correlated with the principal spatial direction in the re-
gion. Therefore, in this case there is a correspondence between real world pat-
terns and the simulations of the neutral model where isolation by distance is 
conditioning interactions between communities. There are many other studies 
based on ethnographic or archaeological data where isolation by distance pat-
terns and typological gradients can be observed. 

Jordan and Shennan analyzed the basketry made by different Indian groups in 
the late 19th and early 20th century in North California, and found that space 
is the major structuring factor in the variability of basketry attributes (Jordan 
& Shennan 2003). The typological gradient of the basketry closely follows the 
major spatial directions of the study area (NW-SE), and there is a high cor-
relation between distances based on basketry attributes and spatial distances 
between different communities. 

Lycett analyzed the parfleche characteristics and moccasin beadwork dec-
oration of the Great Plains Indians, based on the ethnographic data (Lycett 
2019; 2015b). The distribution of parfleche characteristics was not spatially 
structured, but the moccasin beadwork was, as both the Mantel correlation 
test and the principal coordinates analysis show. The ordination of the Great 
Plain Indian communities on the first principal coordinate axis (analogous to 
the first CA axis) resembles the north-south sequence of the communities in 
geographic space. 

Schillinger and Lycett investigated the correlation between material culture 
traditions and geographical distance in the Upper Amazon region and found 
the same isolation by distance pattern, as in the examples described above 
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(Schillinger & Lycett 2019). The similarities in material culture were correlated 
to spatial distances between communities. 

Mathew and Perreault (2015) performed a cross-cultural study on the dataset 
of 172 Native American small-scale societies, and found that variables related 
to cultural history, i.e. related to social learning and cultural transmission, had 
more impact on the behavioral variability between communities than ecolog-
ical variables. However, the results of this study have shown that both spatial 
distance (cultural interactions) and cultural phylogeny (cultural descent) had 
impact, with the cultural phylogeny variables having larger impact on average 
than the spatial distance. 

I mentioned only some of the many examples in the preceding paragraphs (for 
many more see Hodder 1978). The Mantel correlation coefficients from several 
studies are summarized in Table 4.4. It is difficult to make direct comparisons 
between the empirical and simulated correlation coefficient values, as there 
are many uncontrolled factors present in the real world data (sampling effects, 
temporal effects, demographic processes etc.), but it is interesting to note that 
most of the values of correlation coefficients between the material culture dis-
tances and spatial distances are not too far away from the simulated data.
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Region Material 
culture

Mantel correlation coefficient 
(absolute value) between 
geographic distances and 

material culture (dis)similarity 

Reference

New Guinea (early 
20th century)

Various 
classes

0.34-0.48 (depending on the 
interassemblage distance 

measure)

(Welsch et al. 
1993)

North California 
(late 19th, early 
20th century)

Basketry 0.627 (Jordan & 
Shennan 2003)

Upper Amazon 
(early 20th 

century)

Various 
classes 0.44 (Schillinger & 

Lycett 2019)

Great Plains (19th 
century AD)

Moccasin 
beadwork 0.43 (Lycett 2019)

North America, 
Northern Iroquoian 
(14th-17th century 

AD)

Pottery
0.43-0.53 (depending on the 

interassemblage distance 
measure)

(Hart 2012)

Western 
Mediterranean 

Neolithic, 6th 
millennium BC

Pottery 0.49 (Rigaud et al. 
2018)

Western 
Mediterranean 

Neolithic, 6th 
millennium BC

Personal 
ornaments 0.39 (Rigaud et al. 

2018)

Western Anatolia, 
Aegean, Balkans 

6600-6100
Pottery 0.16 (de Groot 2019)

Western Anatolia, 
Aegean, Balkans 

6200-5900
Pottery 0.3 (de Groot 2019)

Western Anatolia, 
Aegean, Balkans 

6000-5700
Pottery 0.37 (de Groot 2019)

Western Anatolia, 
Aegean, Balkans 

5800-5500
Pottery 0.43 (de Groot 2019)

Table 4.4.  Mantel correlations between spatial and typological distances for the selected ethnograph-
ic and archaeological examples. 

There is also one important point to be made about interpreting the Mantel 
matrix correlation between cultural and spatial distances. This correlation is 
dependent on the spatial scale of observation. For example, if we look at the 
Figure 4.3 which shows the plot of spatial vs. typological distances based on 
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the results of Experiment 4.1 (neutral transmission with low interaction), we 
can see that the relationship between the two variables changes with distance. 
To demonstrate this, I will „zoom in“ at the scatter of points for the 951-1000 
iterations interval shown in Figure 4.3, by looking at the shorter span of typo-
logical distances on the y axis (Figure 4.29). If we only look at the cells which 
are approximately 5 cell square side lengths (50km if we interpret the simu-
lation setup in quasi-realistic terms) or less apart from each other, we would 
get a relatively high correlation of 0.47 for this spatial window (spatial window 
A in Figure 4.29). This is higher than the overall correlation when the spatial 
window includes all distances between cells, which is 0.42 (cf. Table 4.1). So, 
as we expand the spatial scale, the correlation decreases. This is so because 
after a certain spatial distance threshold is passed, it does not matter whether 
two cells are 15 or 25 distance units apart, their interaction is going to be ex-
tremely unlikely and the corresponding typological distances would be equally 
large (spatial window B in Figure 4.29). The net result is a loss of correlation. 
So, if we look at the pairs of cells which are more than 5 square side lengths 
apart, the Mantel correlation drops to 0.25. If the spatial scale was larger, the 
overall correlation would decrease even more. 
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Figure 4.29.  Typological vs. spatial distance graph for the low interaction neutral model (Experiment 
4.1). The vertical line is drawn approximately at the threshold distance when the effect of 
spatial distance on typological distance becomes weaker. In area A, the correlation coef-
ficient value is 0.47, in area B it is 0.25. 
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The strength of the distance matrix correlations depends also on the range of 
interaction. The range of interaction depends on how the probability of inter-
action is modeled in respect to spatial distance. In this book, I have modeled 
the probability of interaction to be proportional to the inverse of the squared 
distance between the cell communities. The exponent 2 (squared distance) was 
kept constant, as it was chosen as the „standard“ way to model interaction 
between human communities in space (see Chapter 3, section 3.2.1, Eq. 3.1). 
However, there is nothing fixed about the inverse square. We could easily im-
agine other values of the exponent, such as inverse cube, or any other real 
number value, which would result in different shapes of typological vs. spatial 
distance curves, and subsequently in different patterns of correlation decay. 
The value of the exponent of the inverse distance determines the spatial range 
of interaction – the higher the exponent, the more localized are the interac-
tions, as the probability of interaction decreases more quickly with spatial dis-
tance. Figure 4.30 compares exponents 1 and 5 to exponent 2 which was used 
in the simulations in this book. The exponent value of 5 leads to more localized 
interactions than the inverse squared distance, whereas exponent 1 results in a 
higher average range of interactions as probabilities of interaction. 

Spatial distance

In
te

ra
ct
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n

Figure 4.30.   The function which represents the relationship between spatial distance and interaction 
between communities, parametrized with different values for the c exponent. Higher val-
ues of c lead to more localized interactions as the interaction likelihood drops quickly 
with increasing distance.
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The ethnoarchaeological research shows that the formal attributes (mor-
phological, technological, decorative and compositional) of material culture 
are spatially structured, sometimes coinciding with social boundaries as well 
(Stark et al. 2000; Graves 1994; Gosselain 1992; Hodder 1977; 1982; 1978). 
What was noted in some of these cases is that the ethnographically docu-
mented interaction between people across the boundaries of social groups was 
not reflected in the material culture. For example, Hodder concluded that in 
the Baringo District in Kenya there were discrete boundaries in the spatial 
distribution of material culture, coinciding with the boundaries of the Pokot, 
Tugen and Njemps tribes (Hodder 1977; 1982). Even though the interactions 
across the tribal boundaries were intensive, this was not reflected in the ma-
terial culture, which was structured along tribal boundaries. In other words, 
no gradients or clines were observed, as each tribe had a distinct and spatially 
bounded material culture. Hodder suggested that this situation was the result 
of conformism – that there were strong pressures within each tribe to con-
form to the norms, which also included the production and use of material 
culture (Hodder 1977; 1982). 

Hodder used this result to question the traditional archaeological assump-
tion that interaction between groups will depend on spatial distance and will 
be reflected in the material culture, with (dis)similarities of material culture 
between communities as a measure of their interaction. This assumption was 
questioned by many others as well. Plog reviewed ethnographic and archaeo-
logical literature and concluded that stylistic similarity does not measure in-
teraction, as in many cases there is no correlation between stylistic and spatial 
distances, or the correlations were low (Plog 1980). Jones also suggested that 
“archaeologists cannot then assume that degrees of similarity and difference 
in material culture provide a straightforward index of interaction” (Jones 
1997: 115). 

How do the results of the simulations presented in this chapter resonate with 
these observations and conclusions, as interaction determined by distance is 
assumed in each of the simulation? There is no single correct answer to this 
question. The simulations show that this will depend on the transmission 
model, its parameters, initial conditions, and the passage of time. There are 
several points to be made here:

1)  The isolation by distance effect is expected to be most visible when com-
munities are sedentary. Residential mobility may complicate the correlation 
between typological and spatial distances. However, at larger spatial scales, 
the isolation by distance effect can also be present in the case of mobile 
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communities, if the scale of observation is larger than the scale of mobility. 
But the simulations presented here are intended to be valid for the sedentary 
case, as no residential mobility is modeled in any of the scenarios.

2)  The simulations in this chapter show that even when the interactions 
(transmission between cells) are structured by distance, the correlation co-
efficients will not be high, due to the effects of drift. 

3)  In archaeological cases, there is never a perfect contemporaneity between 
site assemblages (this is noted by Plog 1980: 16-17, 22-24). Therefore, ty-
pological distances between sites are always influenced by the temporal di-
mension as well (these effects are analyzed in Chapter 6). 

4)  Sampling effects can destroy the spatial pattern even if there was one – one 
of the three random samples presented in Figure 4.29 did not show the sig-
nal of spatial structuring that would have been detected if the entire pop-
ulation of cells and cell assemblages had been included into the analysis.

 5)  In all of the simulations presented in this chapter there are intercom-
munity interactions (copying variants from other cells) with the degree of 
interaction between cell communities determined by the spatial distance 
(proportional to the inversed squared distances between cells). However, 
these interactions are not necessarily reflected in the spatial pattern of for-
mal variability, especially not in the conformist model, as there is a low 
chance that any imported type will increase in frequency in such scenar-
ios28. This might resolve the paradox noted by Hodder (1982, 1979) in his 
ethnoarchaeological study that tribal boundaries were clearly reflected in 
the material culture despite the intensive interaction across tribal borders. 
The conformist transmission model, when the initial situation is such that 
there are distinct groups to begin with, predicts this kind of spatial distri-
bution of material culture. It is interesting that Hodder did note that some 
of the metric attributes (e.g. the dimensions of the spears) were spatially 
autocorrelated within tribal areas, which is equivalent to a clinal distri-
bution. In Wiessner’s (Wiessner 1983; 1984) terms, artifact classes which 
have discrete distributions associated spatially and socially with different 
tribes would be examples of the emblemic style, where conformist trans-
mission is the main mechanism of its persistence, whereas some of the 

28  The spatial structure of interaction is captured only if the Jaccard distance/similarity metric is used 
for the cluster analysis. This would only be captured with entire populations or large samples, as 
instances of foreign variants are rare and almost never increase in frequency. 
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metric attributes that do show clinal distributions are manifestations of the 
assertive style, which can be transmitted according to the neutral model. 

6)  Rather than looking for a single general theory of style, cultural trans-
mission theory circumvents the entire problem of defining style and its 
function by offering the opportunity to construct explicit models that may 
capture a wide variety of factors which cause and structure formal varia-
tions of material culture in time and space (Eerkens & Bettinger 2008). In 
the cultural transmission theory framework, the kind of style and its social 
function (if there is one in any particular case) will be reflected in the model 
of transmission. If we can capture the crucial aspects of how material cul-
ture is generated, by formulating a specific cultural transmission model, 
then we can use these models to evaluate their correspondence with the 
empirical data, as researchers such as Kovacevic et al. (2015) and Crema et 
al. have done (Crema et al. 2014a). Different concepts and functions of style 
can be implemented in different models. For example, the assertive style 
can be modeled by neutral or anti-conformist transmission; the important 
features of the emblemic style can be related to the conformist or Axelrod 
model. However, the correspondence is only partial, as models of cultural 
transmission cannot capture the intentionality of using a certain variant as 
a social signaling vehicle. 

This short exercise in cultural transmission in space shows that the issue of 
material culture variation in space is quite complex, as the quite limited range 
of scenarios explored here can generate different and interesting patterns. 
We can summarize and analyze these patterns using our statistical lenses for 
viewing formal variations in space. The neutral model seems to generate the 
clearest patterns of all the models explored here. It should be emphasized that 
this is only a small fraction of the possible models. For example, I did not 
explore the anticonformist model at all. Therefore, the results presented here 
only scratch the surface of potential variation. 
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PATTERNS IN TIME

5.1.  INTRODUCTION

In the previous chapter, I explored how different parameters and models of 
cultural transmission generate the patterns of material culture variability in 
space. In this chapter, I will shift the focus to the temporal patterns. We will 
see how another fundamental aspect of archaeology, the construction of rel-
ative chronology, has deep connections with cultural transmission theory. 
This theory can help us to better understand the patterns that we observe and 
to use this knowledge to improve and extend the traditional archaeological 
method of establishing relative chronology – the seriation method. I will fo-
cus in particular on the patterns related to the dynamics of type-frequencies 
in time, upon which the seriation method is based. The experiments in this 
chapter will show how these patterns can arise from cultural transmission and 
the properties of the archaeological record. In addition to studying the theo-
retical basis of seriation, I will explore the temporal signatures of the neutral, 
conformist and anti-conformist models. I will also use cultural transmission 
theory to investigate another theoretical problem – the remarkable chrono-
logical patterns associated with archaeological cultures which were revealed in 
a study by Manning et al. (2014). 

5.2.  SERIATION

The temporal patterns of material culture variability have always been in the 
focus of the archaeological research. Being able to tell which artifact/assem-
blage belongs to which period, or which artifact/assemblage is older or more 
recent than some other, is fundamental for the archaeological study of the 
past. The establishment of chronology comes first in the order of archaeolog-
ical business. Today, archaeologists mostly rely on methods of absolute dating 
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such as radiocarbon for acquiring both absolute and relative chronological in-
formation, but constructing chronologies was a serious methodological chal-
lenge in the pre-radiocarbon era (O’Brien & Lyman 1999). 

In situations where assemblages come from stratified layers, the geological 
law of superposition enables archaeologists to determine the relative chronol-
ogy by analyzing the stratigraphy. In the absence of depositional disturbances, 
the assemblages and artifacts from the top layers are more recent than the 
assemblages from the bottom of the sequence. But the task of establishing the 
relative chronology of non-stratified artifacts or assemblages is particularly 
difficult. For example, if we have a set of one-layered sites or a set of pits with 
no mutual stratigraphic links within a site, and we have pottery assemblages 
associated with each of these entities, how do we reconstruct a relative chron-
ological sequence?

Archaeologists of the late 19th and early 20th century were quick to discover 
the answer to this question, as they invented seriation as a method of rela-
tive dating (O’Brien & Lyman 1999; Lyman et al. 1998). This is one of the few 
methods in archaeology which is authentically archaeological, meaning that it 
was not borrowed from other disciplines, as is often the case in archaeology, 
but was invented by archaeologists in order to solve a specifically archaeologi-
cal problem. Flinders Petrie and Alfred Kroeber are usually credited with being 
the founders of the method (O’Brien & Lyman 1999; Lyman et al. 1998). 

The general principle of seriation is that the archaeological entities or units 
should be rearranged in such a manner as to minimize the dissimilarity be-
tween adjacent pairs of entities in the sequence, i.e. that the most similar en-
tities are next to each other. The underlying logic is that the units which are 
most similar to each other in their formal properties (on the basis of the at-
tributes of individual artifacts, or presence/absence or frequency distribution 
of types in assemblages) are most likely to be close in time (Dunnell 1970).The 
temporal direction of the sequence (which end of the sequence is the earliest/
latest) must be established independently. Seriation can be performed on at-
tributes of artifacts, individual objects or assemblages of artifacts. O’Brien and 
Lyman (1999) defined three kinds of seriation (summarized here from Porčić 
2018):

Phyletic seriation. In phyletic seriation, attributes, individual objects (artifacts) 
or object types are seriated based on their overall similarity. In most applica-
tions, phyletic seriation is based on the subjective judgment of similarity, but 
it can be made formal by quantifying the features of analytical units, e.g. by 
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recording metric data or calculating similarity indexes between objects based 
on their attribute states, if the attributes are nominal or ordinal scale variables.

Occurrence seriation. This is based on the (dis)similarity between units (usu-
ally assemblages), based on the presences or absences of elements. The main 
principle behind the method was formulated by Flinders Petrie (Petrie 1899), 
who invented the method, and this principle has later been referred to as the 
concentration principle (Kendall 1963). The concentration principle states that 
archaeological units should be arranged in such a way that the spans of the 
characteristics that describe them (e.g. the span of presence of each attrib-
ute of the artifacts, or the span of presence of each type within assemblages) 
should be the shortest possible across the seriation sequence. 

Frequency seriation. This is usually applied to assemblages characterized by 
frequencies of types, as this kind of data contains extra information on the 
frequencies of types or attributes in addition to the mere presence/absence 
data used for the occurrence seriation. The aim of the frequency seriation is 
to order the units in such a fashion that the relative frequencies of attributes/
types follow a unimodal curve across units. This means that the relative fre-
quency of each attribute/type should display monotonical increase followed 
by decrease in relative frequency, after reaching a maximal relative frequency 
for a given set of assemblages (it is also allowed for attributes/types to have 
truncated sequences, in the sense that the relative frequency of an attribute/
type may only increase or decrease across the sequence) (Dunnell 1970; Lipo 
et al. 1997; Ford 1962; O’Brien & Lyman 1999; Porčić 2018; 2013a). Ford in-
vented a manual technique of seriation based on visual patterns (O’Brien & 
Lyman 1999: 124-125; Lyman et al. 1997: 128; Ford 1962). The first step was 
to graphically represent the frequency distribution of types for each assem-
blage on individual narrow paper strips. The percentage of each type in each 
assemblage was represented by the width of a horizontal bar on the strip. The 
analyst would then rearrange the paper strips until the sequence was such that 
the relative frequencies of all or at least most of the types were approximate-
ly unimodal. The visual patterns resulting from successful seriations were 
named battleship curves, as they resembled a bird’s eye view of the silhouette 
of a battleship (Figure 5.1). If this can be done, the resulting sequence is inter-
preted as a relative chronological sequence. Therefore, in addition to the con-
centration principle, frequency seriation also includes the unimodality principle 
or popularity principle, which was based on the empirical generalization that 
things slowly come into fashion, reach a peak of popularity, and then slowly 
go out of fashion (e.g. different hair styles, clothes designs, architecture styles 
etc.). It was noted in many cases where the relative chronology is known (e.g. 
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from stratified deposits) that frequencies of certain attributes/types of a cer-
tain class of material culture change according to or approximating the pop-
ularity principle. 

Figure 5.1.  The hypothetical and ideal “battleship” patterns, with types having perfectly unimodal dis-
tributions (from Porčić 2018: Figure 2).

5.3.  WHY DOES SERIATION WORK?

The seriation method was based on fact that there are recurring and consistent 
patterns of change of material culture through time. From the perspective of 
archaeological theory, the key question is: what is the explanation for these 
patterns? Why are the distributions of the relative frequencies of types uni-
modal rather than bimodal, uniform or approximating some other shape? As 
already noted, this was explained away by invoking the popularity principle 
and the analogy with changing fashions. But this is not an explanation, be-
cause we may rightly ask why are fashions changing in this way?

The answer to this question came almost a century after seriation was first in-
vented. The first cultural evolutionary formulations of the seriation phenom-
enon were made by Robert Dunnell (Dunnell 1970; 1978; 1980). The theoretical 
contribution is related to Dunnell’s specific definition of style. Unlike others 
who looked for the intrinsic stylistic component of objects and the function 
of style (see Chapter 1), Dunnell defined the style in a manner that linked it 
to cultural transmission and cultural evolution. For Dunnell, “Style denotes 
those forms that do not have detectable selective values”, as opposed to func-
tional traits that must have selective values (Dunnell 1978: 199). In terms of 
modern cultural transmission theory, this can be rephrased as: the attrib-
utes or types are stylistic if the change in their frequencies is consistent with 
the neutral (unbiased) model of cultural transmission. This was an important 
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step, because stylistic temporal dynamics were conceptualized as the outcome 
of the neutral evolutionary process acting on a population of attributes and 
types as a consequence of cultural transmission. 

The key step in linking seriation and the popularity principle with cultural 
transmission theory was made by Fraser Neiman (1995) in his seminal paper 
“Stylistic Variation in Evolutionary Perspective: Inferences from Decorative 
Diversity and Interassemblage Distance in Illinois Woodland Ceramic Assem-
blages” (see also Teltser 1995a). Neiman simulated the outcomes of simple 
unbiased (neutral) transmission with mutations. He demonstrated that the 
temporal dynamics of variant frequencies closely resembled the “battleship” 
patterns expected from successful seriations (Neiman’s simulation setup has 
been replicated in this book, see below). In other words, the relative frequen-
cies of simulated variants behaved in time similarly to the relative frequencies 
of real types and attributes – after the first appearance by mutation (inno-
vation), their frequencies increased, reached a peak, and then gradually de-
creased. It should be noted, however, that neither the simulated nor the real 
world types were in perfect correspondence with unimodal distribution. This 
means that small fluctuations in frequencies, departing from the strict uni-
modality principle, always occur. This is an issue which we will return to soon 
in this chapter. 

The results of Neiman’s simulations have clearly shown that cultural trans-
mission theory offers a good explanation for cultural patterns that were ob-
served to occur in all times and places29. The neutral model of cultural trans-
mission was the potential mechanism behind the popularity principle. This 
realization opened up new possibilities for theorizing seriation and extend-
ing its epistemic potential beyond the reconstruction of relative chronologies. 
The most notable achievement in this area was that of Lipo et al. (1997), who 
demonstrated that seriation can be used to identify cultural lineages in space 
and time. The spatial scale of cultural transmission is closely linked to tem-
poral patterns. 

29  The seriation of coin assemblages is the major exception to the interpretation of seriation patterns in 
terms of cultural transmission theory and the neutral transmission model. It is possible to establish 
the relative chronology of coin assemblages by seriation even though the dynamics of change in coin 
type frequencies have nothing to do with cultural transmission and the neutral transmission model 
(see Lockyear 2000a; 2000b; 2022). In the ideal case, the relative frequency of a coin type is greatest 
at the moment of its first emission, although in practice there is a lag until the coins are distributed; 
so the first half of the battleship curve (before the peak) is expected to be much shorter than the 
second half (after the peak) (Lockyear 1993; 1999). The decrease of a coin type is not due to differen-
tial copying but to coin decay rates and the fact that new issues appear all the time (Lockyear 1993; 
1999). Therefore, even though unimodality is expected in coin assemblages, as well as ordination by 
similarity, these patterns are not generated by the process of cultural transmission.
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Archaeologists have always been aware of the fact that the success of a seri-
ation depends on choosing the assemblages from a limited spatial area (Dun-
nell 1970). Lipo et al. (1997) used cultural transmission theory to model the 
effects of space on the temporal patterns of the simulated material culture. 
They demonstrated that if there is little interaction between the two microre-
gions within a region, it will not be possible to successfully seriate assem-
blages from the region as a whole. This result has important methodological 
implications: if a criterion for a successful seriation can be established, then 
it should be possible to define the spatial areas of intensive social interaction 
based on the subsets of assemblages that can be seriated successfully. This 
can also be used to detect important historical changes such as the splitting 
or merging of communities – or, more precisely, of cultural lineages. Building 
upon the main results of the Lipo et al. (1997) paper, Lipo et al. (2015) present-
ed a method that can create branching or merging seriation sequences that 
resemble phylogenetic trees. But unlike the classic phylogenetic graphs, where 
the end nodes are, at least in theory, contemporary entities whose phylogeny 
is modeled by the tree, branching seriation sequences explicitly represent an-
cestral assemblages in the sequence. The importance of these results cannot 
be overestimated, as they represent a tool for identifying community structure 
in space and time on the basis of stylistic data.

5.4.  THE ISSUE OF UNIMODALITY

For almost a century, unimodality has been the gold standard for successful 
seriation30, and the degree of conformance to the unimodality ideal was taken 
as the measure of the fit (Lipo et al. 1997). Deviations from ideal unimodality, 
which were regularly present both in the most successful seriations as well as 
in the stratified sequences, were thought primarily to reflect sampling errors 
and the effects of the formation processes. But Neiman’s simulation results 
clearly suggested that the perfect unimodality was not present in the simulat-
ed sequences where there was no sampling error or taphonomic factors affect-
ing the loss or distortion of the original chronological signal. This was indeed 
an interesting situation. The fact that Neiman’s results strongly resembled 

30  In the meantime, Lipo et al. (2015) have shown there is a much better criterion for constructing 
seriation – the continuity principle. A successful seriation sequence generated by the process of 
cultural transmission will be such that typological distances in terms of attribute states or variant 
frequencies between artifacts or assemblages, respectively, will be the least possible, because the 
evolution of artifacts and assemblages proceeds gradually. The outcome of this process is continuity 
in the sequence. This is basically the rationale behind the concentration principle and the most gen-
eral principle of seriation that applies to all kinds of seriations, whereas unimodality only applies to 
frequency seriation (and in some sense to occurrence seriation). Lipo et al. (2015) and Madsen (2020) 
suggest that it is more practical to look for seriation solutions that minimize distances between en-
tities than to look for the best approximations of unimodal solutions. 
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empirical patterns was persuasive evidence that the neutral model of cultural 
transmission was an excellent explanation for the popularity principle, yet 
perfect unimodality was not observed in the simulation data where it could not 
be explained away by different sources of error. 

But what causes unimodality in the first place? Let us start with the most 
recent work by Madsen, who addressed this issue in his PhD thesis. Mad-
sen (2020) concluded that there is nothing special about unimodality when it 
comes to seriations:

“...there is nothing necessary about unimodality given cultural transmission. In-
stead, culture-historical classifications and typologies were constructed such that 
they produced compact spatiotemporal distributions and generally followed un-
imodal histories. This is precisely what Krieger’s (1944) “test of historical sig-
nificance” yields when applied to a candidate typology. This is accomplished 
by ensuring that types are composed of multiple dimensions of variation which 
co-occur on artifacts identified to that type. Each dimension of variation (e.g., 
surface treatment) may have complex histories, like those seen in Figure 5.2, but 
when we combine several dimensions into a class, the history of the co-occurrence 
of each combination of attributes becomes smoother and more localized in time 
and space. This process of class construction necessarily results in a more compact 
spatiotemporal distribution for the class than for any of its constituent attributes.” 

(Madsen 2020: 118-119)

Therefore, Madsen suggests that the fact that in the real world types often 
conform very well to the unimodality ideal can be explained by the fact that 
types constructed by paradigmatic classification (such as the intersections of 
all possible attribute states) (Dunnell, 1971; O’Brien & Lyman 2000) represent 
averaged and smoothed histories of individual attributes that are less unimod-
al when taken individually. In this chapter, I will test this hypothesis.

In addition to this, Madsen suggests that the fact that relative frequencies are 
closed scales (they must add up to 1 or 100, for proportions or percentages, 
respectively) also contributes to the appearance of unimodality. Madsen then 
concludes:

Taken together, these factors seem to explain why the intuitive construction of 
historical types, from the continuous flow of the products of cultural transmis-
sion processes, worked to produce chronology through application of the com-
mon-sense popularity principle, and why not all artifact classes constructed from 
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otherwise “stylistic” dimensions of variation, are suitable for frequency seriation 
using unimodality as the ordering criterion. From the perspective of culture his-
torians, unimodality was a sufficient criteria for recognizing patterns that were 
likely chronological from those that were likely not. While focusing on only those 
classes that produced unimodal distributions in class frequencies might have ig-
nored other potentially historical significant classes, without any other means of 
identifying chronological patterns, culture historians were satisfied with the sub-
set that worked. 

(Madsen 2020: 119-120)

I will start investigating these issues by proposing, as an additional hypothesis 
for the explanation of unimodality, that the level of time-averaging (aggregation) 
increases the level of unimodality in the data. This hypothesis has already been 
anticipated by Neiman in his doctoral dissertation:

 “Clearly this implies that chronological variability among assemblages charac-
terized in terms of style would most closely approximate the monotonic frequency 
seriation model when those assemblages were derived from communities of mul-
tiple individuals, or were the result of large amounts of time averaging, or both”. 

(Neiman 1990: 197)

Intuitively, this proposition makes sense. If the process is such that variant 
frequencies change by drift, decreasing temporal frequency should highlight 
the wax-and-wane patterns, as the stochasticity of individual transmission 
events will become more patterned when averaged over multiple transmission 
episodes. Likewise, assemblages from stratified deposits, where the unimodal 
pattern was observed and inspired the formulation of the frequency seriation 
method, are not snapshots of systemic assemblages, but accumulations of ob-
jects from wide intervals of time (usually tens or hundreds of years). 
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5.5.  QUANTIFYING UNIMODALITY

5.5.1.  The seriation coefficient

Before I proceed with the investigation, a technical digression is needed in 
order to find a way to quantify the degree of unimodality in a particular se-
quence of assemblages. In an attempt to construct a goodness of fit measure 
for seriation solutions, several years ago I introduced the seriation coefficient 
(Porčić 2013a):

 S = (Max – O) / (Max – E) (Eq. 5.1)

where O is the observed total number of modes, E is the expected total number 
of modes if all types had unimodal distributions (E is therefore equal to the 
number of types), and Max is the maximum total number of modes, depending 
on the number of assemblages in the data matrix. The data matrix is concep-
tualized in such a way that the rows correspond to different assemblages and 
the columns correspond to different types. For an even number of assem-
blages, the maximum total number of modes is equal to the number of types 
multiplied by the number of assemblages divided by 2. For an odd number of 
assemblages, the maximum total number of modes is equal to the product of 
the number of types on one side, and the number of assemblages plus 1 divided 
by 2 on the other. The number of assemblages had to be taken into account 
because data matrices with a low number of rows can have fewer potential 
departures from unimodality than matrices with a greater number of rows. 
In its essence, the seriation coefficient measures how well the empirical data 
approximate the ideal unimodal seriation model (it can take values between 
0 and 1 – values close to 1 indicate a strong fit to the seriation model, while 
values close to 0 indicate a poor fit). Therefore, unimodality coefficient would be 
the more accurate name for this indicator. 

However, there is a problem with this measure – in its original form (Porčić 
2013a), it overestimates the magnitude of unimodality of sequences. The pro-
cedure for calculating the maximal number of modes needed for the calcula-
tion of the seriation coefficient may sometimes grossly overestimate the true 
maximum and thus inflate the value of the coefficient. For this reason, I use 
a modified version of the seriation coefficient which is not inflated. I present 
a better way for estimating the maximum number of modes, which removes 
the inflation problem. The technical details related to the modification of the 
seriation coefficient and the associated R code are presented in Appendix 4.
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5.5.2.  The absolute coefficient of unimodality

In addition to fixing the problem with the original seriation coefficient, I would 
also like to introduce here an additional goodness of fit measure for seriation 
solutions. The seriation coefficient as defined in Porčić (2013a), and modified 
in this book, can be interpreted as a relative coefficient of unimodality. It is rela-
tive because it compares the empirical number of modes to the potential max-
imum number of modes, taking into account the number of assemblages and 
types. We could also define a simpler measure – a ratio of the number of types 
to the observed number of modes. If all types have only a single mode along 
the seriation sequence, then the value of this coefficient is equal to one, which 
is exactly what we would want from a measure of unimodality in the case of 
a perfect fit. As the empirical number of modes increases, the value of such a 
coefficient would decrease. I will call this coefficient an absolute coefficient of 
unimodality, as it does not take into account the potential for the number of 
modes of the data matrix; it is only based on the observed number of modes 
and the number of types (the expected number of modes for the ideal unimod-
al sequence). In order to make the text easier to follow, I will henceforth refer 
to the relative coefficient of unimodality (the modified seriation coefficient) as 
S1, and to the absolute coefficient of unimodality, as defined here, as S2.

The S2 coefficient is a non-linear function of the observed number of modes, 
as it decreases faster with the increasing empirical number of modes (Figure 
5.2), unlike S1, which is a linear function of the observed number of modes 
(Appendix 4, Figure A4.1). For example, when the number of modes reaches 
5 modes per type, the S2 value falls to ~0.2. Given that it does not take into 
account the number of assemblages and, by implication, the potential for the 
deviations from unimodality, it is best to use it to compare seriations with data 
sets of similar dimensions in terms of the number of assemblages and types. 
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Figure 5.2.  The S2 (absolute coefficient of unimodality) for the hypothetical data set containing 40 
assemblages and 20 types changes linearly as a function of the total number and the 
number of modes per type.

5.5.3. Neiman’s example (Experiment 5.1)

Let us start with Neiman’s (1995) seminal example. A neutral model of cul-
tural transmission is simulated for 400 time-steps, with population size of 
50, mutation rate equal to 0.01, all agents starting with the same variant, and 
use-life of objects being equal to one simulation time-step. Therefore, in each 
time-step an assemblage of size 50 items is produced. If we look at the rela-
tive frequency of variants for assemblages in their true temporal sequence, we 
can see that the overall pattern only approximates to the unimodal pattern, 
and that it is far from perfect (i.e. many variants having two or more modes) 
(Figure 5.3). This is confirmed by the values of the seriation coefficients: S1 is 
equal to 0.82 and S2 is equal to 0.37.

 If we did not know the true order of the assemblages and performed the se-
riation using correspondence analysis (CA), we would get seriation solutions 
like those in Figure 5.3. These solutions also approximate to the unimodal 
model, but not perfectly. Moreover, they have lower unimodality than the true 
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sequence (S1 = 0.61, S2 = 0.21), even though the accuracy of the seriation solu-
tion is very high (Spearman’s rho between the true and reconstructed orders 
of assemblages is 0.98). Even though the value of Spearman’s rho suggests an 
extremely high correlation between the true and reconstructed orders, looking 
at Figure 5.3 shows that there are many reversals present in the reconstructed 
sequence even though it is correct in general. Comparing the sequences from 
Figure 5.3 leads to the impression that CA tends to increase the unimodality 
of variants with higher overall frequencies, while decreasing it for the less 
numerous variants – it makes the temporal distributions of the most frequent 
variants more unimodal at the expense of the less frequent variants, thus low-
ering the overall unimodality of the sequence. 

Figure 5.3.  The battleship plot showing the true sequence of assemblages in the upper panel; the 
reconstructed sequence of assemblages by seriation using CA in the lower panel. There 
are 204 variants in total, but for clarity only variants with total frequencies greater than 10 
are shown in the graph. Time flows from bottom to top.
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5.6.  TESTING THE TIME-AVERAGING HYPOTHESIS

5.6.1.  Testing the overall effect of time-averaging on unimodality 
(Experiment 5.2)

In order to fully investigate this issue, I made a series of 111,607 simulations, 
each having a particular combination of simulation parameters. For each sim-
ulation run of 1000 iterations, a single value is generated by randomly sam-
pling from a set of discrete values defined for each simulation parameter: 1) 
Population size: 25, 50, 100, 200, 500, 1000; 2) Mutation rate: 0.0005, 0.001, 
0.01; 3) Initial diversity of variants: 10, 30, 50; 4) Item use-life: 1, 2, 3, 4, 5, 
6, 7, 8, 9, 10; 5) Degree of time-averaging (accumulation interval width): 1, 
10, 20, 50, 100, 200. Therefore, there are potentially 3240 distinct and equally 
probable combinations of parameter values, with 30.45 observations for each 
combination of parameters on average, given the 111,607 simulation runs. In 
this way, I generated a large amount of cultural transmission sequences, each 
one subjected to seriation analysis by CA. For each simulated sequence, un-
imodality coefficients S1 and S2 were calculated for the true sequence of as-
semblages, as well as for the reconstructed sequences. Seriation accuracy for 
each sequence was calculated as a Spearman’s rho coefficient between the true 
and reconstructed orders of units. This allows us to systematically explore the 
influence of different parameters of transmission and time-averaging on the 
unimodality and accuracy of seriation solutions, and to make more general 
statements based on the wider range of transmission and archaeological pa-
rameter values and their combinations.

The first step will be to explore the distribution of seriation accuracy coeffi-
cients, as well as the unimodality of the true and reconstructed sequences, in 
order to see how well the seriation with this particular technique is success-
ful, and how close these sequences are to the unimodal ideal. In general, CA 
does a relatively good job in reconstructing the correct order (Table 5.2). The 
mean seriation accuracy (correlation between the true and reconstructed se-
quence) is 0.853, the median is 0.95, while 75% of sequences have a seriation 
accuracy of over 0.802, with distribution strongly skewed to the left as the 
greatest number of cases cluster in the upper end of the range (Figure 5.4). 
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Seriation 
accuracy

S1 (true 
sequence)

S2 (true 
sequence)

S1 (reconstructed 
sequence)

S2 
(reconstructed 

sequence)

Mean 0.85 0.80 0.70 0.78 0.69

Median 0.95 0.82 0.85 0.79 0.83

Std. 
Deviation 0.21 0.143 0.33 0.16 0.33

Table 5.2.  Descriptive statistics for the coefficients of unimodality and seriation accuracy based on 
the 111607 results of Experiment 5.2.

Figure 5.4.   The distribution of correlation coefficients measuring seriation accuracy based on the 
results of Experiment 5.2.
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As for the unimodality of true sequences, the mean for the S1 coefficient is 
0.803, the median is 0.82, and 75% of cases have values greater than 0.718. 
Distribution is slightly skewed to the right (Figure 5.5), with 1 being the modal 
value. For S2, mean is 0.703, median is 0.854 and 75% cases have values great-
er than 0.48. Distribution seems to be bimodal, but the great majority of cases 
cluster around the high values, with 1 again being the modal value. Therefore, 
most true sequences are highly unimodal. 

Similar results are obtained for the reconstructed sequences (Figure 5.5). For 
S1, the mean is 0.782, the median is 0.794, and the value of the 25th percen-
tile is 0.655. The shape of the distribution is similar to S1 for true sequences. 
For S2, the mean is 0.688. the median is 0.829, and 75% of cases have val-
ues greater than 0.422. The distribution is slightly bimodal. Therefore, recon-
structed sequences are also highly unimodal. The mean S1 and S2 values for 
reconstructed sequences are only slightly lower than the corresponding means 
of the true sequences. 

Figure 5.5.   The distributions of the S1 and S2 coefficients for the true and reconstructed sequences 
based on the results of Experiment 5.2.
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The second step of the analysis is to explore the influence of the transmission 
parameters and time-averaging on the unimodality of the true assemblage se-
quences. I performed a multiple regression analysis with the S1 unimodality of 
the true sequence coefficient as dependent, and degree of time-averaging, pop-
ulation size, mutation rate, average use-life, and initial diversity of variants as 
independent variables. The regression model has a moderate effect size (R2 = 
0.386; 38.6% of the variance of the S1 unimodality coefficient is explained by 
the independent variables). The regression parameters are summarized in Table 
5.3. As the individual parameter values were sampled independently from one 
another, the parameters are not correlated, so we can interpret the standardized 
beta coefficients as closely approximating the zero order linear correlations be-
tween the dependent and individual independent variables. All independent var-
iables are statistically significant predictors, but this is to be expected, given the 
large sample size, so I will focus on the standardized slope coefficients as meas-
ures of effects size for each variable. As predicted by the main hypothesis in this 
chapter, the time-averaging does indeed have the highest relative impact on 
the true unimodality as measured by the S1 coefficient, as its standardized beta 
coefficient is the highest (0.524). The next variable that also positively corre-
lates with S1 is the mutation rate, but its influence is twice as low (standardized 
beta = 0.262) compared to the influence of time-averaging. The average use-life 
is negatively correlated with the unimodality, meaning that items with longer 
use-lives are less likely to have unimodal variant frequencies under the neutral 
transmission model. This effect of use-life is somewhat lower than the effect 
of the mutation rate and it is negative (standardized beta = -0.195), indicating 
that lower use-life leads to higher unimodality. Population size and the initial 
diversity of variants are positively correlated with S1 very weakly, therefore this 
relationship, although statistically significant, has no practical implications. 

Unstandardized Coefficients Standardized 
Coefficients p

b Std. Error Beta

Degree of  
time-averaging 0.001 0.000 0.524 0.000

Population size 0.0000036 0.000 0.009 0.000

Mutation rate 8.624 0.077 0.262 0.000

Use-life -0.010 0.000 -0.195 0.000

Initial diversity 
of variants 0.000 0.000 0.048 0.000

Table 5.3.  Results of the multiple linear regression based on the results of Experiment 5.4, with the 
S1 of true sequences as the dependent variable.
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As the relations between variables are not always linear, I also calculated the 
Spearman correlation matrix between all pairs of the extended set of variables 
(which includes seriation accuracy, S2 for true sequences, as well as S1 and S2 
for the reconstructed sequences) based on the 111,607 individual simulation 
results (Table 5.4). The results show that the degree of unimodality of both 
true and reconstructed sequences is indeed positively and relatively strongly 
correlated with time-averaging. Time-averaging is also significantly, if weak-
ly correlated with seriation accuracy (rho = 0.282). 
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The relationship between the degree of unimodality of true sequences, recon-
structed sequences and seriation accuracy is complex. We can see that there 
is a moderate correlation between the unimodality of true sequences and the 
seriation accuracy (for S1 rho is 0.429, for S2 rho is 0.309), but only a very 
weak, yet statistically significant, correlation between unimodality of recon-
structed sequences and seriation accuracy (for S1 rho = 0.077, for S2 rho = 
0.164). This means that sequences for which the true order of assemblages is 
closer to the unimodal ideal are more likely to be correctly reconstructed by 
seriation, although the effect size for such a tendency is moderate, given the 
correlation coefficient values. There is also the same tendency for the recon-
structed sequences – those which are more unimodal are also more accurately 
reconstructed and vice-versa – but this tendency is very weak and practically 
insignificant given the low correlation coefficient values. 

In order to explore this issue in more detail, I discretized the S1 values for the 
true and reconstructed sequences, as well as Spearman’s rho values which 
measure the seriation accuracy (Tables 5.5 and 5.6). The results presented in 
the form of a contingency table clearly show that unimodality has the highest 
impact on accuracy only when the S1 for both true and reconstructed sequenc-
es is low. This means that true sequences which have low unimodality are 
less likely to be correctly reconstructed (P(Accuracy > 0.66 | S1 true < 0.33) = 
0.043; P(Accuracy) > 0.66 = 0.84), and it also means that reconstructed se-
quences with low unimodality are less likely to be accurate (P(Accuracy > 0.66 
| S1 reconstructed < 0.33) = 0.275; P(Accuracy) > 0.66 = 0.84). At high levels 
of unimodality, the relative frequency structure is approximately equal to the 
marginal relative frequencies of the seriation accuracy indicator. The relevant 
probabilities based on the contingency table are P(Accuracy > 0.66 | S1 true 
> 0.66) = 0.862 and P(Accuracy > 0.66 | S1 reconstructed > 0.66) = 0.807. 
Even though highly accurate sequences are dominant when the unimodali-
ty of either true or reconstructed sequences is high (~0.8), this is essentially 
the same proportion as the general proportion of accurate seriations in the 
results (P(Accurate) = 0.84). Therefore, the information that unimodality is 
high, whether true or reconstructed, does not reveal much about the seriation 
accuracy.
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Seriation accuracy
Total

< 0.33 0.33-0.66 > 0.66

S1 (true 
sequence)

< 0.33
N
% of S1 (true sequence)

115 115 14
244

47.1% 47.1% 5.7%

0.33 - 0.66
N 1590 3359 14272

19221
% of S1 (true sequence) 8.3% 17.5% 74.3%

> 0.66
N 3437 9288 79417

92142
% of S1 (true sequence) 3.7% 10.1% 86.2%

Total
N 5142 12762 93703

111607
% of S1 (true sequence) 4.6% 11.4% 84.0%

Table 5.5.   Contingency table showing cross-tabulation of discretized seriation accuracy and dis-
cretized S1 (true sequence) for Experiment 5.4.

Seriation accuracy
Total

< 0.33 0.33-0.66 > 0.66

S1 
(reconstructed 

sequence)

< 0.33

N
% of S1 
(reconstructed 
sequence)

17 39 15
71

23.9% 54.9% 21.1%

0.33-0.66

N
% of S1 
(reconstructed 
sequence)

546 1502 27592
29640

1.8% 5.1% 93.1%

> 0.66

N
% of S1 
(reconstructed 
sequence)

4579 11221 66096
81896

5.6% 13.7% 80.7%

Total

N
% of S1 
(reconstructed 
sequence)

5142 12762 93703
111607

4.6% 11.4% 84.0%

Table 5.6.   Contingency table showing cross-tabulation of discretized seriation accuracy and dis-
cretized S1 (reconstructed sequence) for Experiment 5.2.

Population size and mutation rate are positively correlated to seriation accu-
racy – higher population and mutation rate moderately increase the probabil-
ity that the sequence will be correctly reconstructed. Additionally, population 
size is negatively correlated to the unimodality of reconstructed assemblages. 
Use-life is weakly negatively correlated to unimodality of both reconstructed 
and true sequences. The initial diversity of types has no practically significant 
effect either on seriation accuracy or on unimodality. 
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5.6.2.  Time-averaging, unimodality and seriation accuracy – controlling 
the number of assemblages (Experiment 5.3)

Finally, I conducted one more simulation experiment in order to eliminate the 
potential effect of different numbers of assemblages on unimodality and accu-
racy of seriation (e.g. it is more likely to obtain the correct solution by chance 
with a smaller number of assemblages due to the smaller number of permuta-
tions). In previous experiments, increasing the degree of time-averaging im-
plied decrease in the number of assemblages as the total simulation time was 
fixed. In this experiment, I vary the degree of time-averaging, but I keep the 
number of assemblages constant by adjusting the total simulation time. The 
number of assemblages for the analysis is fixed at 20. If the degree of accu-
mulation is such that items from 50 individual iterations are aggregated into 
one assemblage, the total simulation duration is 1000 steps. If the degree of 
accumulation is such that items from 100 individuals iterations are aggregated 
into one assemblage, the total simulation duration is 2000 steps. The popula-
tion size was fixed to 100, the mutation rate was set to 0.01, the average use-
life was set to 2 steps, and the initial diversity of variants was 10. The degree 
of time-averaging is the only variable that was allowed to vary, by the choice 
of one of the following values that indicates the number of successive assem-
blages that were aggregated for each of 1019 simulations: 5, 10, 25, 50, 75, 100.

The results of this experiment are summarized in Table 5.7, where Spearman’s 
correlation coefficients between the key variables are shown. Time-averaging 
is strongly correlated to the unimodality of the true sequence as measured by 
the S1 coefficient – increasing time-averaging increases the unimodality of a 
true sequence. The degree of time-averaging is also moderately correlated to 
the seriation accuracy. It is also interesting to note that the correlation be-
tween the unimodality of reconstructed sequences and the seriation accuracy 
is strong, implying that sequences with higher unimodality are more likely to 
be correct. 

Degree of  
time-averaging

Seriation 
accuracy

S1 (true 
sequence)

S1 (reconstructed 
sequence)

Degree of time-
averaging 1.000 0.475 0.906 0.644

Seriation accuracy 1 0.548 0.860

S1 (true sequence) 1 0.751

S1 (reconstructed 
sequence) 1

Table 5.7.   Spearman’s rho correlations between unimodality and seriation accuracy for Experiment 
5.3. 
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5.7.  PATTERNS IN TIME GENERATED BY OTHER MODELS 
OF CULTURAL TRANSMISSION

As mentioned in Chapter 2, there are other models of cultural transmission 
which can generate unimodal or approximately unimodal distributions of cul-
tural variant frequencies in time (Acerbi et al. 2012; Klimek et al. 2019; New-
berry & Plotkin 2022). This implies that the neutral model is a sufficient, but 
not a necessary condition for this pattern to arise. In this section, I will ad-
dress this issue explicitly, and explore whether the other two most commonly 
used models in evolutionary archaeology, the conformist and anticonformist 
models, can also produce unimodal patterns. I will compare the three models 
(neutral, conformist and anti-conformist) to see how they affect the degree of 
unimodality of temporal sequences.

The implementation of the neutral and conformist models in simulations has 
already been described in Chapters 3 and 4, but a short digression needs to be 
made to describe the implementation of the anti-conformist model. To reit-
erate, the anti-conformist model is a model of cultural transmission where 
there is a positive bias towards rare cultural variants in the population. There 
are several ways to interpret anti-conformist bias, and so, as for the conform-
ist model, other formulations are also possible for the anti-conformist model 
(e.g. Kandler & Crema 2019; Crema et al. 2016). In this study, I interpret anti-
conformist bias as a pro-novelty bias, meaning that anti-conformist behav-
ior will consist of favouring new variants (the ones generated by mutations), 
since they are the least frequent in any time step. The likelihood of copying 
the new variant will depend on the degree of anti-conformism in the popu-
lation, conceptualized as the probability that an individual will behave in an 
anti-conformist manner, i.e. copy the least frequent variant. Therefore, in the 
simulation of the anti-conformist model, each agent has three options when 
it has to decide about the variant of the item: 1) copy the least frequent variant 
from the current set of variants with probability equal to anticonf (probability 
or degree of anti-conformism) - if there are two or more such variants with 
equal frequencies, the choice between them will be random; 2) introduce a 
completely new variant (mutation) with probability equal to μ; 3) randomly 
copy a variant from another agent from the same cell with probability 1 − μ – 
anticonf.

How would the temporal pattern of type frequencies look, if we added a degree 
of conformist or anti-conformist bias? Let us set up an experiment (Experi-
ment 5.4) with an (item/agent) population size of 100, mutation rate equal to 
0.01 (1%), starting with an initial assemblage in which each of the 10 initial 
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variants has the same frequency (10). The average item use-life is set to 2 it-
erations and the simulations will run for 2000 iterations. The time-averaging 
interval is set to 25 iterations (or 25 years, approximating one generation, 
which is a reasonable generic value for the duration of a building horizon), 
which means that there will be 80 assemblages in a sequence for each simula-
tion run. I try out nine simulation scenarios: the first scenario will be the pure 
neutral model; the following four scenarios will implement the conformist 
model with increasing probability of conformist behavior (conf), set to 5%, 
10%, 20%, and 50%, sequentially; and the final four simulation scenarios will 
implement the anti-conformist model with the probability of anti-conformist 
behavior (anticonf) set to 5%, 10%, 20%, and 50%, sequentially. Each scenario 
is run for 50 times. I calculate the seriation coefficient S1 for each simulation 
run. 

Figure 5.6 shows distributions of S1 for different transmission models. It is 
apparent from this graph that all three models are capable of generating se-
quences with high levels of unimodality, but there are systematic differences 
between the models – the anti-conformist model generates slightly higher 
unimodality values than the neutral model, whereas the conformist model 
generates lower S1 values than both the neutral and anti-conformist models. 
This pattern is even sharper when the degree of (anti)conformity is plotted 
against S1 (Figure 5.7). 

Figure 5.6.   Boxplots showing the distributions of the S1 coefficient based on the sequences generat-
ed by the neutral, conformist and anti-conformist models (Experiment 5.4).
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Figure 5.7.   Left: The decrease of unimodality with increasing conformism (based only on the neu-
tral and conformist scenarios of Experiment 5.4). Right: The increase of unimodality with 
increasing anti-conformism (based only the on neutral and anti-conformist scenarios of 
Experiment 5.4).

To see why is this so, I present three typical battleship plots for the neutral, 
conformist (conf = 10%) and anti-conformist (anti-conf = 10%) transmission 
scenarios based on the simulations in this experiment (Figure 5.8). The re-
duced degree of unimodality in the conformist transmission compared to the 
neutral model is a reflection of a drastically different dynamics of change in 
type frequencies. A type which by chance becomes the most frequent is the one 
which is always present, but its frequency oscillates owing to constant mu-
tations, thus decreasing the unimodality of its frequency distribution in time. 
On the other hand, the dynamics of the anti-conformist model is such that, 
as soon as the new mutation appears, it becomes transmitted, leading to the 
increase of its frequency, and the decrease in the frequency of older variants. 
This kind of dynamics makes it less likely that the older variants will increase 
in frequency once they have passed their peak; so the result is perfect or al-
most perfect unimodality in anti-conformist transmission. 
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Figure 5.8.   The battleship plots for the typical neutral, conformist and anti-conformist transmission 
scenarios from Experiment 5.4. For the neutral and conformist simulation runs, only types 
which have frequency greater than 100 are shown; whereas for the anti-conformist simu-
lation, only types which have frequency greater than 200 are shown. Time runs from bot-
tom to top.
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It should be noted that the battleship plots in Figure 5.8 reveal something 
potentially more important than differences in unimodality between trans-
mission models. What this graph also suggests is that the three models pro-
duce drastically different distributions of type durations (i.e. how much time 
passes between the first appearance and disappearance of a type). I collect-
ed type duration data for the simulations in Experiment 5.4 and calculated 
the coefficients of variation and maximum type duration for each run (Figure 
5.9). The highest maximum duration of types is associated with the conform-
ist model, and the lowest with the anti-conformist model, with the neutral 
model in between. The coefficient of variation of type duration is the lowest for 
the anti-conformist model and highest for the conformist model, again with 
the neutral model between. It is remarkable that the distributions are almost 
non-overlapping; but it should be noted that the simulations in Experiment 
5.4 did not include mixed conformist and anti-conformist models, where a 
fraction of the population copies according to conformist bias, whereas anoth-
er fraction copies according to an anti-conformist bias. The mixing of biases 
within a single experiment might blur the picture (cf. Kandler & Crema 2019: 
Figure 3).

Figure 5.9.   Left: Distribution of coefficient of variation of type durations in individual simulation runs in 
Experiment 5.4 for each model of transmission. 

  Right: Distribution of maximal type durations (in time steps of 25 iterations) in individual 
simulation runs in Experiment 5.4 for each model of transmission.
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5.8.  EMPIRICAL ILLUSTRATIONS OF THE RELATIONSHIP 
BETWEEN TIME-AVERAGING AND UNIMODALITY

5.8.1.  The empirical demonstration

I anticipate that many archaeologists would now stop me and ask a commonsense 
question: are these effects purely statistical artifacts of the models and simula-
tions, or do they have grounding in the empirical reality of the archaeological 
record? This is a perfectly legitimate question. If the models and simulations pre-
sented in this chapter do manage to capture important aspects of the social and 
cultural dynamics that produced the archaeological record, then we should observe 
the same effects in the real data. The theoretical issues that I explored throughout 
this chapter have clear empirical implications, especially when it comes to the 
effects of time-averaging on the unimodality and accuracy of seriation solutions. 
The main issue that was explored in this chapter was unimodality, and there is a 
clear prediction that follows from the theoretical explorations presented here: the 
unimodality of temporal sequences should increase with time-averaging. I have 
managed to show that this is the case with simulated data, but now it is time to 
demonstrate this with the real-world archaeological data. 

In order to test this prediction empirically, I will use the data from several stratified 
sites where the relative chronological sequence of the assemblages is known. I will 
artificially create time-averaged assemblages by merging the original assemblages 
coming from the successive stratified horizons. Then, I will calculate the unimo-
dality as well as the seriation accuracy coefficient (Spearman’s rho between true 
and reconstructed sequence) for the different levels of time-averaging. I apply this 
procedure to three independent data sets from the Balkans.

5.8.2.  Case study 1: Ezero

Ezero is an Early Bronze Age site in Bulgaria (~3100-2800 BC) (Weninger 1995; 
Георгиев et al. 1979). It is a stratified tell site with 12 building horizons of similar 
duration (Weninger 1995). I will use the published data on the frequencies of relief 
decoration motifs in each of the 12 stratified building horizons in Ezero (Георгиев 
et al. 1979:Table 200) (Table 5.8). Therefore, the original number of assemblages is 
12, and I will emulate time-averaging by merging assemblages from the adjacent 
building levels. I will explore two levels of time-averaging (Table 5.9). The first 
level is based on merging pairs of adjacent assemblages (II & III; IV & V; VI & VII; 
VIII & IX; X & XI; XII & XIII), whereas the second level is based on merging triplets 
of continuous assemblages (II & III & IV; V & VI & VII; VII& IX & X; XI & XII & XIII).
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For the Ezero data, the unimodality coefficients S1 and S2 for the true sequence 
of assemblages increase from 0.49 and 0.39, to 0.7 and 0.67, respectively, as 
the accumulation interval width increases from one horizon to two horizons, 
and to 0.9 and 0.92 for the accumulation interval width of 3 assemblages (Ta-
ble 5.9). The correlation between the true and reconstructed sequence is very 
high to begin with (rho = 0.97), with the reconstructed sequence being closer 
to the unimodal ideal than the true sequence. With the first aggregation (in-
crease of the accumulation interval width to 2 horizons), the seriation accu-
racy becomes perfect – the order of the true sequence and the sequence re-
constructed by CA become identical. Further time-averaging increases S1 and 
S2, but leaves the accuracy unchanged, as it has already reached its maximum. 

Aggregation interval 
width S1 true S2 true Seriation accuracy 

(Spearman’s rho)

1 0.49 0.33 0.97

2 0.7 0.67 1

3 0.9 0.92 1

Table 5.9.   The influence of time-averaging on unimodality and accuracy of seriation for the recon-
structed and true sequences of stratified building horizons based on pottery decoration 
motifs at the Early Bronze Age site of Ezero in Bulgaria.

5.8.3.  Case study 2: Selevac 

Selevac – Staro selo is a Late Neolithic multiphase site in Serbia with an ar-
chaeological record spanning several centuries, from the last quarter of the 
6th to the first half of the 5th millennium BC, as suggested by the radiocar-
bon data (Tringham & Krstić 1990). In the 1977-78 campaigns, nine building 
horizons (BH) were defined: I, II, III, IV, V, VI, VII, VIII, XIX (Tringham & 
Krstić 1990). In order to test the hypothesis that the unimodality increases 
with time-averaging, I used the published data on the typology of the shoul-
dered bowls, i.e. the frequencies of the 86 shouldered bowl types in different 
building horizons in Selevac (Vukmanović & Radojčić 1990). Sherds were as-
signed into types based on the profile shapes, and the total of 86 shouldered 
bowl types was defined by Vukmanović and Radojčić (1990). These are all ex-
tensionally defined types (sensu Dunnell 1971; O’Brien & Lyman 2000). It is a 
reasonable assumption that all variants within a single class such as shoulder 
bowls are analogous in function and therefore have similar use-lives and frag-
mentation rates. 

Again, the results are in agreement with the predictions of the time-aver-
aging hypothesis, although the increase in unimodality is more modest than 
in the previous case study (Table 5.10). When the assemblages from the 



156

Chapter 5

originally defined 9 stratigraphic horizons (1977-1978 campaigns) are arti-
ficially time-averaged by merging the assemblages from horizons II and III, 
IV and IV-VI, VII and VIII, the S1 and S2 for the true sequence increase from 
0.47 and 0.65, to 0.53 and 0.79, respectively. The seriation accuracy becomes 
perfect after time-averaging, although it was very high to begin with.

Degree of time-averaging S1 true S2 true Seriation accuracy 
(Spearman’s rho)

No artificial aggregation 
(original stratigraphic units) 0.47 0.65 0.89

Artificially time-averaged 
assemblages 0.53 0.79 1

Table 5.10.   The influence of time-averaging on unimodality and accuracy of seriation for the recon-
structed and true sequences of stratified building horizons based on the shouldered bowl 
form types at the Late Neolithic site of Selevac in Serbia.

5.8.4.  Case study 3: Vinča – Belo brdo

Vinča – Belo brdo is the eponymous site of the Late Neolithic Vinča culture 
situated in the vicinity of Belgrade (Serbia), where the Late Neolithic horizons 
are dated between 5300 and 4500 BC (Tasić et al. 2015b; Tasić et al. 2015a). 
Amongst other things, the site is famous for its large collection (N > 1000) of 
clay anthropomorphic figurines from the Late Neolithic period (Лазић 2015; 
Срејовић 1968; Тасић 2008; Hansen 2007: 203-221). I have made an exten-
sional classification (sensu Dunnell 1971; O’Brien and Lyman 2000) of the an-
thropomorphic figurine eye types (Figure 5.10) based on the photo archive of 
the Archaeological Collection of the Faculty of Philosophy, University of Bel-
grade. The archive contains photographs of the figurines excavated in the digs 
before the World War II (Васић 1932; 1936a; b; c). For each figurine fragment, 
the relative depth at which it was found is known, so the assemblages were 
created by grouping all figurines found at the same relative depth as they were 
recorded by their mechanical excavation spit of 10cm by the original excavator 
of the site M. Vasić (for details about the methods used to record the strati-
graphic position of artifacts in the pre-World War II excavations in Vinča, as 
well as their validity, see Palavestra 2020; Schier 2000). I have recorded the 
figurine eye types on 389 figurine fragments or complete figurines where this 
attribute was observable. In total, 39 figurine eye types were defined.
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Figure 5.10.  The examples of the figurine eye types (meme variants) from Vinča – Belo brdo (photos by 
A. Radoman and V. Miladinović, published in Николић 2008: catalogue numbers 11, 12, 21, 
22, 16, 20, 43, 44, 45). 
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There were four degrees of time-averaging in this exercise. The first degree 
was the lowest possible time-averaging level, when the original 10cm exca-
vation spit units were used to group specimens into assemblages. The second 
and third degrees were generated by artificially merging the pairs of adja-
cent assemblages from the previous level of time-averaging. The fourth de-
gree of time-averaging was made by grouping the analyzed figurines into 1 
metre-thick deposits based on their relative depth. The results of the analy-
sis are summarized in Table 5.11. The unimodality increases with increasing 
time-averaging as predicted by the main hypothesis (for visual assessment 
see Figures 5.11 and 5.12). The S1 and S2 coefficients are initially low (below 
0.5), but they almost double when the time-averaging reaches the highest de-
gree. Unsurprisingly, the accuracy of the seriation increases as well. 

Aggregation interval width S1 true S2 true Seriation accuracy (Spearman’s rho)

1 0.358 0.291 0.557

2 0.383 0.371 0.763

3 0.483 0.565 0.8

7 assemblages by meters 0.767 0.796 0.964

Table 5.11.   Time-averaging intervals and S1, S2, and seriation accuracy, Vinča – Belo brdo.

Figure 5.11.   The battleship plot for the first degree of time-averaging based on the true stratigraphic 
sequence of anthropomorphic figurine types at Vinča – Belo brdo.
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Figure 5.12.   The battleship plot for the second, third and fourth (from top to bottom panel) degree of 
artificial time-averaging based on the true stratigraphic sequence of anthropomorphic 
figurine types at Vinča – Belo brdo.

5.9.  THE NUMBER OF ATTRIBUTES AND UNIMODALITY 

I now return to Madsen’s (2020) hypothesis, that the number of attributes 
used to construct types is related to the unimodality in such a way that the 
increase in the number of attributes also increases the unimodality. In this 
section I am moving deeper, from the level of types and assemblages to the 
level of attributes and types. I will be looking at the change of frequencies of 
types in assemblages, but in this case the types will be paradigmatically con-
structed (see Dunnell 1971; O’Brien & Lyman 2000) from attributes, and the 
cultural transmission will be modeled at the attribute scale. Attributes will be 
transmitted independently of each other, but I will still track the frequency of 
types by constructing them as combinations of attribute variants.

We can already anticipate that Madsen’s hypothesis will be supported, based 
on the results of the experiments presented earlier in this chapter, which 



160

Chapter 5

suggest that mutation rate is an important predictor of unimodality (cf. Table 
5.4). If each attribute is transmitted independently (in the neutral transmis-
sion mode), and if each attribute has the same mutation rate, then the com-
pound mutation rate for the types constructed paradigmatically from these 
attributes will have a greater mutation rate than types based on single attrib-
utes31, and therefore by implication, the unimodality of the temporal sequence 
of assemblages should be higher.

In order to explicitly test this hypothesis, I conducted a new experiment (Ex-
periment 5.5) where types/variants are defined on the basis of a single attribute 
in contrast to three, six and twelve attributes. In each scenario, the population 
size (N = 100), the mutation rate (μ = 0.001), the average item use-life (L = 
2), initial diversity (D = 10), the simulation run duration (t = 1000), and the 
degree of time-averaging (20 iterations) are the same for each attribute. This 
means that there are as many transmission chains as there are attributes, but 
attributes are not analyzed separately, they are combined into types and the 
frequency of types created in such way is counted in each assemblage in the 
sequence. For each scenario, the experiment is repeated a thousand times, and 
the S1 coefficient is calculated for each run. If Madsen’s hypothesis is true, we 
should see an increase in the mean S1 value as we move from the one-attribute 
scenario to the multiple-attribute scenario.

The results partially support this hypothesis (Figure 5.13). The mean S1 is in-
deed greater when the number of attributes is greater than one. It is inter-
esting to note that the seriation accuracy also increases with the increasing 
number of attributes used to define the types. However, the situation is more 
complicated than a simple monotonic positive correlation, as the average un-
imodality decreases with the increasing number of attributes used to define a 
type. More research is needed to systematically explore this issue, but I would 
speculate that this effect is due to the large number of attribute combinations 
which are possible with higher attribute numbers, and the possibility that 
some of their combinations will fluctuate at low frequencies in the sequence, 
thus violating the principle of unimodality.

31  It will be higher than the simple combination of individual attribute mutation rates, as the combi-
nation of the already existing attribute values will produce novel types even in the absence of the 
novel attribute values.
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Figure 5.13.   Left panel: The distribution of the S1 of the true sequences for types paradigmatically de-
fined with increasing number of attributes. Right panel: The distribution of seriation accu-
racy sequences for types paradigmatically defined with increasing number of attributes; 
Experiment 5.5.

5.10.  THE TEMPORAL DISTRIBUTIONS OF 
ARCHAEOLOGICAL CULTURES

5.10.1.  The unimodality of archaeological cultures

Manning et al. (2014) discovered an interesting pattern when they studied 
the temporal distributions of archaeological cultures from the Neolithic pe-
riod in Europe. The temporal distribution of an archaeological culture, or the 
intensity of an archaeological culture in Manning’s et al. (2014) terms, refers 
to the summed probability distribution (SPD) curve32 based on the calibrated 
radiocarbon dates assigned to a particular culture. For example, if all availa-
ble calibrated probability distributions of the radiocarbon dates, based on the 
samples which are identified as belonging to the LBK culture, are summed the 
resulting curve would measure the intensity of the LBK culture in time. The 
curve would represent a proxy for the frequency of LBK artifacts or sites for 
different periods of time. When Manning et al. generated SPDs for 22 archaeo-
logical cultures, the shape of the SPD for each individual culture was very sim-
ilar to the normal distribution curve (Manning et al. 2014: Figures 5-6). The 
intensity of a culture would gradually increase in time, reach the maximum, 
and then slowly decrease:

32  The construction and exploration of SPD curves is a popular method used to reconstruct and analyze 
population dynamics in archaeological demography (for general reviews see Crema & Bevan 2021; 
Williams 2012).
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“Finally, it is worth pointing out that the characteristic normal distribution we 
have identified bears a striking resemblance to the so-called ‘battleship curves’ 
produced when frequency seriations are carried out on individual artefact types 
that are chronologically sensitive. When cultures are taken as entities they seem to 
mirror this effect. In essence, the number of dated events that archaeologists are 
prepared to label, for example as Horgen or Michelsberg, starts small, increases to 
a peak and then declines again. The pattern could arise because of the waxing and 
waning popularity of temporally correlated styles across a geographical region. 
Another possibility, supported by demographic proxies in some cases (Shennan et 
al. 2013), is that they reflect fluctuations in local populations; at some periods there 
are simply more people in the region, so the number of dated events characterised 
by the styles of the period is also bound to be greater. Of course, these two possi-
bilities are not mutually exclusive, and in some cases it could be that new cultural 
innovations themselves result in periods of population increase. These questions 
remain open for subsequent analysis.” 

(Manning et al. 2014: 1078)

Therefore, one potential explanation for this phenomenon is demograph-
ic, and the pattern itself was anticipated by Shennan. According to Shennan 
(2000; 2013), the fluctuations in population size would have implications for 
the temporal variability of material culture. The population bottlenecks would 
create drift-like patterns in the domain of material culture. For example, the 
decrease in population size would also lead to the decrease of cultural diversity 
(e.g. diversity of pottery types). Variants that were rare before the bottleneck 
may become dominant afterwards simply by chance, when the population 
starts to grow again. This might be perceived as the end of one archaeologi-
cal culture and the beginning of a new one. 

In this section, I will explore the potential explanation for this phenomenon 
which excludes population dynamics (i.e. it assumes no changes in the popu-
lation size). I will show that the pattern revealed by Manning et al. (2014) can 
also be predicted as a consequence of applying the traditional culture-histor-
ical principles of the construction of archaeological cultures to the variability 
of material culture generated by the simple neutral model of cultural trans-
mission in space and time. 
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5.10.2.  Simulating the temporal distribution of an archaeological culture 
(Experiment 5.6) 

Let us run the low interaction neutral model simulation (with modeled space 
as in Chapter 4) with the following setup for 3000 iterations: population size, 
100 (the number of items/artifacts); probability of inter-community interac-
tion, 0.1; mutation rate, 0.001; average item use-life, 2 iterations; all cells start 
with the same assemblage with 30 types sampled with equal probability. In the 
next step, we will generate archaeological assemblages for each cell for every 
100-year interval by aggregating the individual iteration assemblages. 

How do we define the archaeological cultures based on the simulated assem-
blages? In the traditional culture-historical approach, archaeological cultures 
are usually defined - or “discovered” - in the following way (cf. Ford 1954b). 
In a region that has not been explored archaeologically, an archaeologist starts 
to excavate a site. Even though the choice of a site to be excavated first is 
usually a product of particular historical contingencies and idiosyncratic rea-
sons from the perspective of our imagined archaeologist, this selection can be 
considered as random for all practical purposes in most situations. The formal 
characteristics of the material culture discovered at this site are used to define 
the new archeological culture - let us call it the X culture. As more sites are 
excavated in this region, they will be assigned to the X culture if they are suf-
ficiently similar to the original type site, or they will be assigned to some other 
newly defined archaeological culture. 

Now let us try to emulate this traditional algorithm for the definition of ar-
chaeological cultures with the simulated data. I will randomly choose a cell 
from the simulation grid (say 116), and I will randomly choose a temporal 
interval (say 1901-2000) of the assemblage. This will be equivalent to the for-
tuitously discovered type site of the archaeological culture X. I will call this cell 
the type site cell for the culture X. Next, I will calculate the Jaccard similarity 
coefficient33 between the type site cell assemblage and all other cell assem-
blages within the same temporal interval, as well as between the type site cell 
assemblage and each cell assemblage from all the earlier and later temporal 
intervals (including the assemblages from different times coming the same 
type cell34). Next, I will determine the cut-off value for the Jaccard similarity 
coefficient – I will set it at 0.5. I cannot be certain what the right cut-off value 

33  It seems to me that the Jaccard coefficient better reflects the subjective process of similarity evalu-
ation, as in most cases the archaeologists have relied more on the presence of key types rather than 
their frequency, for the cultural assignment of the assemblage.

34  We should imagine that the sites from the same cell but different times are not located in exactly the 
same spot within a cell.
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is, because in the traditional approach, the similarities are based upon sub-
jective judgments, and therefore the result will be qualitatively similar for the 
range of reasonably chosen cut-off values. The cells which have a similarity 
coefficient higher than the cut-off will be classified as belonging to the same 
culture X as the type cell. In the final step, I will count the number of cells be-
longing to our hypothetical culture on the basis of the randomly selected type 
cell assemblage for each temporal interval, and plot this count in time. Given 
the arbitrariness of the Jaccard similarity coefficient cut-off value, I will also 
track the mean value of Jaccard similarity between the type site cell assem-
blage and all other cell assemblages from all temporal intervals. So, the inten-
sity of the simulated culture X will be tracked in two ways: 1) as the frequency 
of cells in each time interval which have a value of the Jaccard similarity co-
efficient greater than 0.5, and 2) as the mean value of the Jaccard similarity 
between the type site cell and all other cells in the different time intervals.

As apparent from the graphs (Figure 5.14), the resulting pattern is qualita-
tively the same as the one observed by Manning et al. (2014) in their empirical 
study. The intensity of the simulated culture increases as one approaches the 
temporal position of the type cell assemblage (iteration 1901-2000, or tempo-
ral interval 11), reaches its maximum in the temporal interval from which the 
type cell assemblage comes from, and decreases afterwards.

Figure 5.14.   Results of Experiment 5.6. Left: the intensity of the simulated archaeological culture X in 
time, the y axis showing the number of cells in each 100 years-long temporal interval be-
longing to archaeological culture X (the frequency of cells in each time interval which have 
a value of the Jaccard similarity between themselves and the culture X type cell coeffi-
cient greater than 0.5); Right: the y axis showing the mean value of the Jaccard similarity 
coefficient to the X culture type cell in a 100-years-long temporal interval.
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In addition to temporal clustering, the traditional algorithm for the discovery 
and construction of archaeological cultures will also produce spatially coher-
ent entities. My emulation of this algorithm does the same. The plots in Figure 
5.15 show the spatial position of the cells which have similarity values to the 
type site cell above the similarity threshold of 0.5 in the time interval to which 
the archaeological culture X type site belongs (iterations 1901-2000), and the 
intervals right before (1801-1900) and after this one (2101-2200). The plots 
in Figure 5.16 show the entirety of the grid where each cell is color-coded in 
respect to its Jaccard similarity value to the focal (type) cell in the time interval 
to which the focal cell belongs and the ones immediately before and after. The 
cells which are typologically similar are clustered in space as well, so these 
plots demonstrate the spatial coherence of archaeological cultures constructed 
in this way.

Figure 5.15.   Results of Experiment 5.6. Left: the spatial position of cells (red) which have Jaccard sim-
ilarity coefficient to the X culture type site cell (black) greater than 0.5 in the 1901-2000 
iteration time interval; Right: The spatial distribution of Jaccard similarity values to the X 
culture type site cell (black) in the 1901-2000 iteration time interval.

This exercise shows how the continuous flow of culture, where no “natu-
ral” breaks exist, can be forced into discrete temporal (and spatial) entities by 
applying the traditional algorithm for the definition of archaeological cultures. 
The temporal center of such a distribution is a product of chance, as the con-
ditions for assemblages to be associated with an archaeological culture depend 
on the characteristics of the site assemblage that happened to be discovered 
first. 
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It is important to emphasize that I do not argue that there are no true typolog-
ical discontinuities and “natural” breaks in the temporal distributions of style 
in the archaeological record, or that the temporal distributions of cultures do 
not reflect changes in population size. My only intention with this exercise was 
to show that it is not necessary to assume such things in order to explain the 
chronological patterns of culture that we observe in the archaeological record. 
It is an empirical problem to determine in each particular case if the archae-
ological cultures as temporal entities are simply mirages emerging from the 
combination of the traditional archaeological culture construction algorithm 
applied to the continuous flow of style (e.g. resulting from unbiased cultural 
transmission), or if they represent true discontinuities in the typological space 
or reflect the underlying population dynamics.  

5.11.  DISCUSSION

In this chapter I tested the hypotheses about the unimodality of temporal se-
quences and explored the patterns in time generated by cultural transmission. 
First, I assumed that the neutral model is a good representation of the real-
ity behind the generation of the variability of material culture through time. 
Under this assumption, I explored how different factors of transmission in 
combination with time-averaging influence the temporal patterns of material 
culture variability in the archaeological record. The simulation results clear-
ly show that time-averaging is a major factor behind unimodality. It is en-
couraging to see that this prediction is also supported by the empirical case 
studies. The battleship pattern is intrinsic to the process of unbiased cultural 
transmission, but it does not create perfect unimodal patterns. The lack of 
perfect unimodality is not the consequence of the sampling size or noise in 
the data generated by various processes, but intrinsic to the neutral trans-
mission process. The results show that low unimodality usually implies low 
seriation accuracy, but the opposite does not apply. If the unimodality of the 
original sequence is high, this does not necessarily imply that the seriation 
will be accurate. Likewise, if the reconstructed sequence has a high degree of 
unimodality this also does not mean that it is necessarily correct. On the other 
hand, sequences with low unimodality are almost certainly inaccurate. There-
fore, unimodality seems to be the necessary, but not the sufficient condition 
for accurate seriation. However, these conclusions need to be qualified in two 
ways. First, these conclusions are limited to the CA as the seriation technique. 
Second, it is possible that some of the highly unimodal sequences for which 
the correct order was not reconstructed are generated by unrealistic parameter 
combinations. 
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Predictions of the simulations regarding the increase of unimodality due to 
time-averaging were empirically tested and found to be supported by the evi-
dence, giving additional support for the basic theoretical premise of using the 
neutral model of cultural transmission as a potential explanation for the com-
monly observed temporal patterns in the archaeological record. This conclu-
sion is further strengthened by the demonstration that other phenomena, such 
as the empirically discovered pattern pertaining to the temporal distributions 
of archaeological cultures, can also be accounted for by the neutral model in 
combination with the traditional logic of culture-historical archaeology. 

However, we have also seen in this chapter that neutral transmission is a suffi-
cient, but not necessary condition for unimodality. Other models of transmis-
sion, such as conformist or anti-conformist transmission, may also produce 
approximately unimodal sequences. As a matter of fact, if we are to look for 
the perfect unimodality, we are more likely to find it with the anti-conformist 
than the neutral model of transmission, as the average degree of unimodality 
is actually higher in the sequences produced by the anti-conformist model. 
So, when we use the neutral model as an explanation or a general model for 
stylistic patterns in time, we should be aware that we are using it as an ap-
proximation.

The results of the simulations also show that Madsen’s (2020) hypothesis, 
that the number of attributes used to construct types via paradigmatic clas-
sification contributes to the unimodality of sequences of assemblages, is par-
tially supported. Unimodality increases when more than one attribute is used 
to construct types, but it seems to decrease afterwards when the number of 
attributes increases furthers. Whether this phenomenon is the consequence of 
the model assumptions (e.g. the assumption that each attribute of an artifact 
is copied independently) remains to be explored in the future.

What are the practical implications of these results? If unimodality is a nec-
essary condition for accurate seriation, then it might be a criterion to filter 
out seriation solutions with low unimodality as being bad candidates. Unfor-
tunately, the high unimodality of a sequence does not guarantee that the par-
ticular seriation solution is accurate. We could perhaps do even more – we 
could artificially induce time-averaging, as I did in this chapter by merging 
stratigraphically adjacent assemblages. We would be sacrificing precision for 
accuracy, but this may be justified, especially when individual assemblages are 
too small for frequency seriation. 
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This approach would be particularly useful for seriating the grave goods as-
semblages. For example, if the individual graves usually have one or two ce-
ramic vessels as grave goods, it will be difficult for the seriation method to 
capture the precise chronological sequence due to low assemblage size. If we 
aggregate assemblages from individual graves we will increase the assemblage 
size, but at the cost of decreasing the temporal resolution by time averaging. 
The reader has probably noticed that in order to perform artificial time-av-
eraging we must know the relative chronology of individual graves, which is 
exactly what we wish to reconstruct. This is apparently not possible in the case 
of non-stratified graves. But if there are specific hypotheses about the spa-
tio-temporal structure of a cemetery (e.g. which graves come from the same 
phase), this approach can be used at least to eliminate some of them, i.e. those 
with low unimodality.

Experiment 5.4, in which other models of cultural transmission such as the 
conformist and anti-conformist models were explored, revealed that although 
approximately unimodal sequences can be generated by any of these models, 
their signatures in the overall pattern of type duration distributions are differ-
ent. These differences may have important consequences for the efforts to re-
construct the models of cultural transmission based on the empirical data. The 
distributions of the relative measures of variability of type durations, as well 
as their maximum values, are almost non-overlapping between the models, 
which suggests that these aspects of the data can be harnessed to the methods 
which aim to discriminate between different models. 
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PATTERNS IN SPACE AND TIME

6.1.  INTRODUCTION

In the previous two chapters I looked at the spatial and temporal effects of cul-
tural transmission separately. In practice, temporal variation can be studied in 
isolation from spatial variation by looking at the stratified assemblages from 
a single site. But it is usually not possible to exercise control for the temporal 
dimension at the regional level in the same way, for at least two reasons. First, 
there is no ideal contemporaneity in the real world – it would be very difficult, 
if not impossible, to find sites and assemblages in a region that were occupied 
in the exact same temporal interval. Second, even if such situation existed, 
most of the time we would not be able to know that this was the case due to 
uncertainties related to conventional absolute dating methods such as radi-
ocarbon dating (Bevan & Crema 2021). Therefore, most of the time, most of 
the assemblages that we analyze will more or less overlap temporally, except 
for the assemblages coming from the very extremes of the temporal interval, 
provided that the duration of the temporal interval under study (the temporal 
window) is longer than the duration of time-averaging of a typical assemblage 
(Figure 6.1). 
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Figure 6.1.   The variable durations and temporal spans of different assemblages. Each arrow repre-
sents a single assemblage, where the arrow length corresponds to the assemblage dura-
tion (temporal span of time-averaging).

For this reason, in this chapter I look at assemblages that reflect both spatial 
and temporal variations. This is a realistic situation faced by most archaeol-
ogists when they analyze the formal variability of assemblages coming from 
different sites in a certain region over a certain temporal interval – e.g. if one 
studies the variability of anthropomorphic figurine assemblages from the Late 
Neolithic in the Central Balkans which lasted between 5300 and 4500 BC. In 
the first part of this chapter, I look at simulated data from this perspective. 
The aim is to identify which aspects of the transmission process and the scale 
of analysis determine whether space or time will structure the formal varia-
bility of assemblages. In the second part of the chapter, I use the same ana-
lytical instruments to look at the empirical archaeological data from different 
regional, temporal, and cultural contexts, to illustrate that the patterns found 
in the simulated data can be identified in the real-world data. 
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6.2.  THE SIMULATED PATTERNS

6.2.1.  The general setup of the simulation experiments and data 
collection

For the purposes of this chapter, I will only explore the neutral model of cul-
tural transmission as a baseline model. Again, we can interpret the spatial and 
temporal scale in the same way as in the previous chapter – the dimensions of 
each cell as 10x10km squares, and one simulation iteration as one year. In each 
experiment presented in this chapter, each simulation was run for 1000 iter-
ations, corresponding to one thousand years of cultural evolution. Two sets of 
parameters will be explored: the observational and transmission parameters.

 The width of the temporal window, the degree of time-averaging and the 
spatial scale are the observational parameters that will be varied in order to 
explore their influence on the patterns. Therefore, the simulated data will be 
collected in different spatial and temporal windows, as well as with different 
levels of time-averaging. The temporal window refers to the interval of iter-
ations from which the assemblages may be formed by time-averaging. It is 
equivalent to the temporal frame of study (e.g. one may study assemblages 
from the period between 5400 and 4900 BC). For example, if I set the temporal 
window to between 500 and 1000 iterations, the cell assemblages used in the 
analysis can only consist of assemblages coming from within these bounda-
ries. The degree of time-averaging is simply the number of single-iteration 
assemblages which are aggregated to create a cell assemblage. In the previous 
chapter, all assemblages from all cells had exactly the same temporal bound-
aries (in terms of the single-iteration assemblages that were aggregated), 
so I could completely control the temporal dimension and look at perfectly 
synchronous assemblages. In this chapter, the positions of the mid-points of 
assemblage temporal intervals will be randomly sampled for each cell within 
the temporal interval, with the constraint that the entire assemblage duration 
interval must be within the temporal window. 

The width of the assemblage duration interval reflects the degree of time-av-
eraging and it will be the same for all cell assemblages. It is not realistic for 
all assemblages to have equal durations, as the assemblage durations will in-
evitably vary in practice; but this kind of variation is not in the focus of this 
chapter, so I proceed with making this simplification. Therefore, the data will 
consist of cell assemblages which may or may not overlap in their temporal 
duration (the degree of overlap will depend on the degree of time-averaging 
and the width of the temporal window) as in Figure 6.1, with the difference 
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that all cell assemblages will have identical durations (i.e. equal arrow lengths 
in terms of Figure 6.1). For example, if the temporal window is set to between 
500 and 1000 iterations, and if the degree of time averaging is set to 100 it-
erations, one cell assemblage may be formed by aggregating iterations from 
500 to 599, another one may span iterations 513-612, a third one 580-679, a 
fourth, 745-844, and so on. Note that despite the temporal overlap, we can 
still talk about the sequence of assemblages in terms of their aggregation in-
terval midpoints (or start- and endpoints). The width of the temporal window 
and the degree of time-averaging are determinants of the temporal scale of 
the analysis.

The shape of the hypothetical region is rectangular in order to have a clear 
spatial direction in the study region. The default is the 10x40 cells grid (400 
cells), unless stated otherwise. The spatial scale can be easily manipulated by 
simply reducing the number of cells in the analysis or by making the simulated 
grid larger. For example, we can implement a computer simulation in the en-
tire virtual space (e.g. including all of the cells in the virtual space), but we can 
then restrict the analysis only to an arbitrary subset of this space. 

I will also vary the transmission parameters such as the frequency of inter-
community interaction, mutation rate and population size. The spatial inter-
action is governed by the spatial interaction model introduced in Chapter 3, 
and we explore two interaction levels, as in the previous chapter: the high 
interaction (m = 0.435 and the low interaction (m = 0.1) scenarios. All cells start 
with the same initial assemblages (sampled from a uniform distribution of 10 
variants), and the average use-life of items is 2 iterations (years). The default 
population size in each cell is 100, and the default mutation rate is set at 0.005 
– these values are assumed as default unless stated otherwise. 

6.2.2.  The outline of the experiments

As stated above, the idea is to explore how changes in the observational and 
transmission parameters of the neutral model influence the patterns of sim-
ulated material culture in space and time. I have conducted eight computer 
simulation experiments in order to investigate this (Table 6.1). In the first two 
experiments (6.1 and 6.2), I explore the influence of the degree of interaction, 
which is a transmission parameter. Experiment 6.1 is a low interaction scenario, 
and Experiment 6.2 a high interaction scenario. In the next three experiments, 

35  Unlike Chapter 4, where the high interaction scenarios had the degree of interaction set to 30%, in 
this chapter I set it to 40%, to increase the contrast between high and low interactions, and demon-
strate the effects of this parameter more clearly.
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I change the observational parameters, and the temporal and spatial scales, 
in order to demonstrate their effects. In Experiment 6.3, I increase the width 
of the temporal window to show how it can amplify the temporal patterning, 
whereas in Experiment 6.4, I increase the level of time-averaging to achieve 
the opposite effect. Experiment 6.5 explores the effects of changing the spatial 
scale of observation – in this experiment, the size of the grid is reduced rela-
tive to the “default” grid size of 10x40 cells used in this chapter. Next, I move 
on to investigate the influence of the remaining transmission parameters. In 
experiments 6.6, 6.7, and 6.8, I show how changes in population size, muta-
tion rate and average object use-life, respectively, can increase or decrease the 
correlations between space, time, and typological variation. 

The number of iterations in each simulation run is 1000, and each experiment 
is repeated 30 times (30 simulation runs per experiment). The mean, mini-
mum, and maximum are reported for each parameter of interest. The results 
of typical experiment outcomes are presented graphically as illustrations. For 
each experiment I look at two sets of correlations. The first set are the corre-
lations between the major dimensions of typological variability represented by 
the CA axes 1 and 2, on one side, and on the other, the major spatial and tem-
poral dimensions, represented by the x coordinates of the cells (as this is the 
major direction of spatial variation) and the midpoints of the time-averaging 
intervals, respectively. The second set of correlations are (Mantel) correlations 
between distance matrices – between Brainerd-Robinson typological distanc-
es on one side, and the spatial and temporal distances, on the other. 

Exp. 
Number

Width of 
the 

temporal 
window

Degree 
of time-

averaging  
(the duration 

of assemblage 
accumulation)

Spatial 
scale 
(size 

of the 
grid)

Interaction Mutation 
rate

Item 
population 

size

Use 
life

6.1 200 50 10x40 Low (0.1) 0.005 100 2

6.2 200 50 10x40 High (0.4) 0.005 100 2

6.3 500 50 10x40 Low (0.1) 0.005 100 2

6.4 500 200 10x40 Low (0.1) 0.005 100 2

6.5 200 50 4x8 Low (0.1) 0.005 100 2

6.6 200 50 10x40 High (0.4) 0.0001 100 2

6.7 200 50 10x40 High (0.4) 0.005 20 2

6.8 200 50 10x40 High (0.4) 0.005 100 30

Table 6.1.   The setup of the simulation experiments in Chapter 6.
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6.2.3.  The low interaction neutral model scenario – setting up the 
baseline for testing the effects of degrees of interaction 
(Experiment 6.1)

First, we will look at the results of the low interaction scenario within the tem-
poral window between 600 and 800 iterations after the start of the simulation. 
The width of the accumulation interval is 50 iterations, and we are looking at 
all of the 400 cells in the simulated space. When the CA axis 1 scores are plotted 
in space, the familiar typological cline emerges along the major spatial direc-
tion (Figure 6.2; Table 6.2). The mean absolute36 correlation between the cell 
coordinates along the major spatial direction and their CA axis 1 scores is 0.96. 
The CA axis 2 also reflects space but in a more complicated way – as a gradient 
away from the regional center (Figure 6.2). When we look only at the shape 
of the assemblage point cloud in the CA space, we will see the arch (horse-
shoe) pattern (Figure 6.3), but the signal here is primarily spatial. The first two 
CA axes reflect spatial components of typological variation. Therefore, even 
though there are temporal differences between assemblages, at this tempo-
ral and spatial scale, with a given level of interaction, most of the typological 
variance between assemblages is spatial rather than temporal. The temporal 
component of variability is usually captured by the CA axis 3 which correlates 
with time (mean absolute r = 0.68, min = 0.17, max = 0.86) (Figure 6.4). 

Figure 6.2.   The plot of the CA axis 1 and CA axis 2 scores in space (based on a randomly chosen 
simulation run of Experiment 6.1).

36  The direction of the correlation is not important in this case as it is entirely contingent on the results 
of the CA analysis, and this particular aspect of the CA has no relevance for the interpretation.
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Figure 6.3.   The configuration of cell assemblages in the typological space defined by the first two CA 
axes (based on a randomly chosen simulation run of Experiment 6.1).

Figure 6.4.   The correlation between the time and the CA axis 3 in Experiment 6.1.
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This is also reflected in the Mantel correlation between typological, spatial and 
temporal distances. The mean correlation between spatial (Euclidean distanc-
es between cell coordinates) and typological distances (BR distances) is 0.5, 
whereas the mean correlation between temporal (Euclidean distances between 
midpoints of assemblage temporal spans) and typological distances is only 
0.16 (Figure 6.5). It should be noted that the correlations between the sum-
mary typological dimensions (the CA axes) and space and time expressed as 
single variables (the major spatial direction and the midpoint of a temporal 
interval) are much higher than the direct correlations between distance ma-
trices. This is so because correlations between matrices include all the noise of 
the raw inter-assemblage typological distances coming from the drift, as well 
as variation that is structured by space and time, whereas the CA axes capture 
the trends. 

Figure 6.5.   The correlation between typological (Brainerd-Robinson) distances, spatial distances 
(left) and temporal (right) distances (based on a randomly chosen simulation run of Ex-
periment 6.1).

6.2.4.  The high interaction neutral model scenario (Experiment 6.2)

But let us now look at the same spatio-temporal setup for the high interaction 
scenario. The temporal window is again between 600 and 800 iterations, and 
the width of the aggregation interval is 50 iterations. When we plot the CA axis 
1 scores in space, no particular pattern can be observed – no spatial clines or 
gradients of typological variability (Figure 6.6). This is confirmed by the low of 
correlation between the major spatial direction and the CA axis 1 scores (mean 
absolute r = 0.07) and a relatively low correlation between spatial and typo-
logical distances (mean r = 0.46). In this case, it is time that correlates almost 
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perfectly with the CA axis 1 (mean absolute r = 0.99, Figure 6.7). The mean 
correlation between temporal and typological distances is 0.7 (Figure 6.8).

The major dimension of inter-assemblage typological variability reflects time 
rather than space. This does not mean that space is not reflected in typological 
variation. The major spatial direction is almost perfectly correlated with CA 
axis 2 (mean absolute r = 0.96, min = 0.92, max = 0.98; Figure 6.9), and the 
mean correlation between spatial and typological BR distances is 0.46 (Fig-
ure 6.9). Therefore, in the high interaction scenario, typological variability 
between assemblages in mostly structured by the temporal dimension (Table 
6.2). In other words, the sequence of cell assemblages along the CA axis 1 is 
the chronological seriation sequence, whereas the sequence on the CA axis 2 
reflects the “East”-to-“West” spatial cline. It is interesting to note that, even 
though the CA axis 1 is almost perfectly correlated with time, the pattern of 
assemblages in the CA space defined by the first two axes does not resemble 
the arch shape characteristic of the chronological signal (Figure 6.10)

Figure 6.6.   The plot of the CA axis 1 and CA axis 2 scores in space (based on a randomly chosen 
simulation run of Experiment 6.2).
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Figure 6.7.   The correlation between time and the major typological dimension (CA axis 1) (based on a 
randomly chosen simulation run of Experiment 6.2).

Figure 6.8.   The correlation between typological (Brainerd-Robinson) distances, spatial distances 
(left) and temporal (right) distances (based on a randomly chosen simulation run of Ex-
periment 6.2).
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Figure 6.9.   The correlation between the major spatial direction and the CA axis 2 (based on a ran-
domly chosen simulation run of Experiment 6.2).

Figure 6.10.   The configuration of cell assemblages in the typological space defined by the first two CA 
axes (based on a randomly chosen simulation run of Experiment 6.2).
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6.2.5.  Changing the temporal scale by increasing the width of the 
temporal window of analysis (Experiment 6.3)

Let us now explore how changing one aspect of the temporal scale, the width 
of the temporal window of analysis, can change the patterns. In this experi-
ment, the width of the temporal scale is increased to include iterations from 
500 to 1000 iterations from the same simulation reported in Experiment 6.1 
(see above). To remind the reader, this was the low interaction scenario where 
the major typological dimension was strongly correlated with the major spa-
tial dimension, when we looked at the time window spanning iterations 600-
800. When we expand the time window, the pattern changes (Table 6.2). The 
CA axis 1 scores, which reflect the typological dimension, do not correlate 
strongly with the major spatial direction any more (mean absolute r = 0.09), 
but with time (mean absolute r = 0.96). Therefore, when the size of temporal 
window was increased, with everything else being the same as in Experiment 
6.1, the temporal dimension became more important than the spatial dimen-
sion. The space is still significantly reflected in the typological variation, as 
the CA axis 2 which explains only slightly less typological variance than the CA 
axis 1 correlates with the major spatial direction (mean absolute r = 0.87, min 
= 0.52, max = 0.93 ). 

The correlations between distance matrices also reflect this. The mean corre-
lation between the BR distances with temporal distances is 0.44, whereas the 
mean correlation between typological distances and spatial distances is 0.29 
(Figure 6.11).

 

Figure 6.11.   The correlation between typological (Brainerd-Robinson) distances, spatial distances 
(left) and temporal (right) distances (based on a randomly chosen simulation run of Ex-
periment 6.3).
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6.2.6.  Changing the temporal scale by increasing the degree of time-
averaging (Experiment 6.4)

The pattern from the previous experiment can easily be reversed to the orig-
inal pattern from Experiment 6.1, where space was the dominant structuring 
factor. This can be achieved by changing the other aspect of the time scale – 
by increasing the aggregation interval. In this experiment, the width of the 
temporal window is the same as in Experiment 6.3 (500-1000 iterations), the 
basic simulation setup is also the same (the low interaction scenario), but the 
width of the aggregation interval is 200 iterations instead of 50. In this exper-
iment, we are assuming that we have a lower temporal resolution and that the 
assemblages have accumulated over a longer time period, i.e. to include sites 
or site-phases that lasted 200 rather than 50 years.

When the CA axis 1 scores are plotted in space, the typological gradient along 
the major spatial direction emerges again (Figure 6.12) and the mean absolute 
value of the correlation is 0.97. This result makes perfect sense – the increased 
time-averaging leads to increased overlap between assemblages, which re-
duces the temporal variation. Again, this does not mean that the temporal 
signal is lost, as there is a strong correlation between the CA axis 2 with time 
(mean absolute r = 0.96, min = 0.86, max = 0.98). This is also reflected in the 
Mantel correlation coefficients between distance matrices. The mean correla-
tion between the typological and spatial distances is 0.62, and between typo-
logical and temporal distances 0.43 (Figure 6.13).

.

Figure 6.12.   The plot of the CA axis 1 scores in space (based on a randomly chosen simulation run of 
Experiment 6.4).
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Figure 6.13.   The correlation between typological (Brainerd-Robinson) distances, spatial distances 
(left) and temporal (right) distances (based on a randomly chosen simulation run of Ex-
periment 6.4).

6.2.7.  The effect of the spatial scale (Experiment 6.5)

The spatial scale can also influence the patterns of correlation between space, 
time and typology. In this experiment we start with the results of the low 
interaction scenario with data accumulated in 50 iteration intervals within 
the 200 iteration wide temporal window (as in Experiment 6.1). The resulting 
pattern is the typological gradient following the major spatial direction of the 
study area. But if we reduce the spatial scale and perform the CA only on the 
section of the study area, and plot the CA axis 1 scores in space, the spatial gra-
dient becomes less clear (Figure 6.14; Table 6.2). This is so because the CA axis 
1 is now more correlated with time (mean absolute r = 0.83) than space (mean 
absolute r = 0.3). Again, this is to be expected, as the reduced spatial variation 
brings to the front temporal differences between the cell assemblages. The 
mean correlation between the typological and spatial distances is 0.33, and 
between typological and temporal distances is 0.47 (Figure 6.15).
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Figure 6.14.   Above: the plot of the CA axis 1 scores in space when the CA is performed on all cell as-
semblages; below: the plot of the CA axis 1 scores based on the CA performed only on 
the cells belonging to the subspace of the original simulated grid (based on a randomly 
chosen simulation run of Experiment 6.5).

Figure 6.15.   The correlation between typological (Brainerd-Robinson) distances, spatial distances 
(left) and temporal (right) distances (based on a randomly chosen simulation run of Ex-
periment 6.5).
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6.2.8.  The effect of mutation rate (Experiment 6.6)

In the experiments presented so far, I have explored how the observational 
parameters combined with only one transmission parameter – the probability 
of intercommunity interaction – produced different patterns. In this experi-
ment and in the experiments that follow, I will focus on transmission param-
eters such as the mutation rate, population size, and the average use-life. The 
hypothesis is that the change in the parameters that increase or decrease the rate of 
cultural evolution, i.e. the change of variant frequencies in time, will also increase or 
decrease the importance of the temporal dimension in relation to the spatial dimen-
sions in structuring the variability of material culture.

In this experiment, I demonstrate how the decrease in the mutation rate weak-
ens the temporal structuring that we observed in Experiment 6.2, which will 
serve as a comparison baseline for this experiment. The setup of the experi-
ment is the same as for Experiment 6.2 (the high interaction scenario), with 
the difference that the mutation rate is reduced from 0.005 to 0.0001, i.e. it is 
lower by an order of magnitude. The results show that the space becomes more 
important when the mutation rate is low, as the correlation between the CA 
axis 1 and the major spatial direction increases substantially (mean absolute 
r = 0.23) compared to Experiment 2, where the corresponding value was 0.07. 
The mean absolute correlation between the CA axis 1 and time is 0.71, which is 
lower than in Experiment 6.2, where it was 0.99 (Figure 6.18, Table 6.2). The 
mean correlation coefficient between the typological distances and spatial dis-
tances is 0.17, whereas the mean correlation is 0.20 for the correlation between 
the typological and temporal distances, the former being higher, and the latter 
lower, in relation to the corresponding values in Experiment 2 (Figures 6.16, 
6.18-19; Table 6.2).

As predicted, the decrease of the mutation rate also decreased the importance 
of the temporal dimension in the structuring of the material culture, and so in 
this case, the main axis of typological variability reflects both time and space 
(which are not correlated), even though the degree of interaction is high. 
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Figure 6.16.   The correlation between typological (Brainerd-Robinson) distances, spatial distances 
(left) and temporal (right) distances (based on a randomly chosen simulation run of Ex-
periment 6.6).

6.2.9.  The effect of population size (Experiment 6.7)

In order to demonstrate the effect of the population size, and to see if it 
matches the predictions of the hypothesis stated above, I start from the setup 
of Experiment 6.2 (the high interaction scenario),with the difference that the 
item population size in this experiment is reduced from 100 to 20. 

The results show that the mean absolute correlation between CA axis 1 and the 
major spatial direction is 0.15, and the mean absolute correlation between CA 
axis 1 and the time dimension is 0.96. The mean correlation between spatial 
and typological distances is 0.37, and the mean correlation between temporal 
and typological distances is 0.54 (Figure 6.17). 

Figure 6.17.   The correlation between typological (Brainerd-Robinson) distances, spatial distances 
(left) and temporal (right) distances (based on a randomly chosen simulation run of Ex-
periment 6.7).
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In comparison to the results of Experiment 6.2 (Table 6.2), there is little qual-
itative change, as the temporal dimension is dominant in explaining the ty-
pological variance, but there are quantitative differences which suggest that 
the decrease of the item population size (the systemic number of objects) does 
have an effect. The mean correlation between time and the major typological 
axis of variation in this experiment is high, but significantly lower than in 
Experiment 6.2, as their ranges barely overlap (Figure 6.16). This difference is 
even more pronounced when we look at the correlation between temporal and 
typological distances – in Experiment 6.2 the mean correlation was 0.7, and 
in this experiment it is 0.54, again with almost no overlap (Figure 6.18). On 
the other hand, the importance of the spatial dimension has increased (Figure 
6.19). Therefore, the decrease of item population size has the same effect as 
the decrease in the mutation rate – the correlation of typological variation 
with time becomes lower, and the correlation with space becomes higher. In 
this case, the effect is not nearly as strong as in the previous experiment, but 
the item population size is only reduced five times in comparison to Exper-
iment 6.2, whereas in the previous experiment (6.6), the mutation rate was 
reduced 50 times37 relative to the value in Experiment 6.2. 

Figure 6.18.   Left: Correlation between the major typological dimension (CA axis 1) and time, compari-
son between experiments 6.2, 6.6, and 6.7. 

  Right: Correlation between typological (Brainerd-Robinson) and temporal distances, 
comparison between experiments 6.2, 6.6, and 6.7.

37  Reducing the population was preferable to increasing the population size for technical reasons – 
computing power and memory – but the reduction could only go so far from the baseline of 100. 
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Figure 6.19.    Left: Correlation between the major typological dimension (CA axis 1) and the major spa-
tial direction, comparison between experiments 6.2, 6.6, and 6.7. 

  Right: Correlation between typological (Brainerd-Robinson) and spatial distances, com-
parison between experiments 6.2, 6.6, and 6.7.

6.2.10.   The effect of the average use-life (Experiment 6.8)

In this experiment, I explore the influence of the average use-life of objects. 
The hypothesis is that, all other things being equal, a class of material culture 
with a low use-life is more likely to be temporally structured than a class with 
a high use-life. The low use-life means that items will be often discarded and 
new ones will often be made. The making of an object is an opportunity for 
cultural transmission and change in variant frequencies. The more there are 
transmission episodes per unit of time, the faster will be the cultural evo-
lution, and the difference in variant frequencies will be greater between as-
semblages from different points in time. In order to test this, I ran the high 
interaction scenario with the setup identical to the setup for Experiment 6.2, 
with the difference that the use-life is set to 30 iterations. This means that 
this class of objects is such that its use-life is similar to the length of a human 
generation. This would correspond to some class of material culture that is 
made only once or few times during a person’s lifetime. To remind the reader, 
in all simulations up to this point the use-life was set to 2 iterations in order to 
make it equivalent to the mean use-life of ceramic bowls. In Experiment 6.2, 
the high interaction scenario resulted in the temporally dominated pattern. 
We expect the increase in the use-life to decrease the importance of temporal 
dimension and to increase the importance of spatial dimension in accounting 
for the typological variation between the cell assemblages. 

The mean absolute correlation between the major spatial direction and the CA 
axis 1 is 0.47, compared to 0.07 in Experiment 6.2, when the average use-life 
was 2 iterations. The mean absolute correlation between CA axis 1 and the 
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time is only 0.05. The mean correlation between the typological and spatial 
distances is 0.06, and between the typological and temporal distances is 0.001 
(Figure 6.20). Therefore, the increase of the average-use life of objects does 
indeed reduce the temporal variation and leads to an increase in the spatial 
variation between assemblages coming from different sites. However, we can 
see that the correlations are very low for both dimensions, especially when 
we look at the correlations between distance matrices. This is so because the 
assemblages actually change very little in time, as object failure is relatively 
rare – only 3.3% of items in each cell are discarded and new ones made, and 
this is when cultural transmission occurs. 

Figure 6.20.  The correlation between typological (Brainerd-Robinson) distances, spatial distances 
(left) and temporal (right) distances (based on a randomly chosen simulation run of Ex-
periment 6.8).
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Exp. 
Number

Correlation 
(absolute 

values) 
between CA 1 

and space
(absolute value)

Correlation 
(absolute 

values) 
between CA 1 

and time
(absolute value)

Correlation 
between spatial 
and typological 

distances

Correlation 
between temporal 

and typological 
distances

6.1
0.96  

(min =0.93,  
max = 0.97)

0.06  
(min = 0.002, 

max = 0.19)

0.5  
(min = 0.42,  
max = 0.55)

0.16  
(min = 0.1,  

max = 0.2)

6.2
0.07  

(min = 0.0002, 
max = 0.23)

0.99  
(min = 0.98,  

max = 0.993)

0.46  
(min = 0.41,  

max = 0.54)

0.7  
(min = 0.64,  
max = 0.75)

6.3 0.09
0.96  

(min = 0.94,  
max = 0.97)

0.29  
(min = 0.2,  

max = 0.36)

0.44  
(min = 0.36,  
max = 0.52)

6.4
0.97  

(min = 0.91,  
max = 0.98)

0.13  
(min = 0.002, 
max = 0.42)

0.62  
(min = 0.54,  
max = 0.68)

0.43  
(min = 0.36,  
max = 0.47)

6.5
0.3  

(min = 0.003, 
max = 0.74)

0.83  
(min = 0.52,  
max = 0.97)

0.33  
(min = 0.18,  
max = 0.47)

0.47  
(min = 0.29,  
max = 0.64)

6.6
0.23  

(min = 0.001, 
max = 0.61)

0.71  
(min = 0.17,  

max = 0.87)

0.17  
(min = 0.08,  
max = 0.29)

0.2  
(min = 0.08,  
max = 0.32)

6.7
0.15  

(min = 0.02,  
max = 0.34)

0.96  
(min = 0.93,  
max = 0.98)

0.37  
(min = 024,  
max = 0.47)

0.54  
(min = 0.45,  
max = 0.61)

6.8
0.47  

(min = 0.05,  
max = 0.78)

0.05  
(min = 0.0001, 

max = 0.18)

0.06  
(min = 0.02,  
max = 0.13)

0.001  
(min = -0.02,  
max = 0.04)

Table 6.2.   Summary of the correlations between space, time, and typology for the experiments in 
this chapter.

6.3.  DISCUSSION OF THE SIMULATION RESULTS AND 
THEIR ARCHAEOLOGICAL IMPLICATIONS

We can summarize the results of the simulations in several points (see also 
Table 6.2): 

1)  All other things being equal, the increase of the width of the temporal win-
dow (temporal interval from which the assemblages come from) increases 
the importance of temporal variation between assemblages and makes it 
more likely that the dominant dimension of typological variation will be 
time rather than space, and vice-versa, that is to say, the decrease of the 
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temporal window size increases the probability of temporal overlap between 
assemblages.

2)  Other things being equal, the increase in the width of the temporal ag-
gregation interval (the level of assemblage time-averaging) will result in 
the decreased temporal variation between assemblages (as the potential for 
overlap will increase), and therefore the spatial effects will be the main 
factor structuring the inter-assemblage typological variability; again, a de-
crease in time-averaging will lead to an opposite effect. 

3)  Other things being equal, changes in the spatial scale – the increase or de-
crease in the area of the study region – will affect the patterns in a predict-
able manner: when the spatial scale is reduced, the temporal variation will 
become more important, and vice-versa. 

4)  Other things being equal, the increase of the population size and/or mu-
tation rate will increase the importance of time in structuring the formal 
variability of material culture. The decrease of these parameter values will 
decrease the importance of time and increase the importance of space.

5)  Other things being equal, the lower values of the average use-life are pull-
ing the patterns toward being time-dominated, whereas higher values in-
crease the importance of space in the resulting patterns. 

6)  Other things being equal, the level of inter-community interaction (i.e. 
the frequency of copying variants/types from other cells) influences the 
patterns in such way that in conditions of low interaction, the typological 
variation will be structured primarily by space; whereas in the conditions 
of increased interaction, the typological variation will have the strongest 
correlation with time. 

The fact that the increased interaction across space leads to time being the 
major structuring variable of the typological differences between assemblages 
may seem odd at first glance, but is actually completely logical (Loog et al. 
2017). Increased frequency of interaction with the outside world gives more 
opportunity to people to come across and copy variants which are further away 
from their own settlement and microregion. The net effect of the increased 
transmission in space is a decrease of typological variability in space. Spatial 
variability will not disappear (as long as the interaction is structured by dis-
tance, regardless of the frequency), but in such circumstances the temporal 
variability becomes more important. Statistically, this is reflected as temporal 
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variability explaining typological variance more than spatial variability. This 
result is equivalent to the results by Lipo et al. (see also Lipo et al. 2015; Lipo 
2001) and their rationale for using seriation as a means to explore interactions 
between communities – assemblages that can be seriated chronologically are 
coming from communities which are integrated by interaction (Lipo et al. 1997

In theory, we could tell if the interaction was high or low between commu-
nities just by looking at whether the major typological axis of variation was 
correlated with space (i.e. the major spatial direction) or time38. In practice, 
this is complicated by the fact that changing the spatial and temporal scales of 
observation, as well as other transmission parameters, also influences wheth-
er the major structuring factor is space or time. Checking whether space or 
time are structuring the typological variation between assemblages is always 
a good starting point, but in order to infer something about the degree of in-
teraction, we need to consult some other referential frame. One such potential 
frame are simulations of the kind presented in this chapter, as one can use 
them to predict at which spatial and temporal scales in combination with a 
particular interaction level a certain pattern will arise. The problem is that 
different combinations of observational and transmission parameters can lead 
to similar or identical outcomes in terms of spatio-temporal patterns. But the 
good news is that in some cases the problem of equifinality can be reduced, 
because the observational parameters are usually known (at least to some de-
gree), and some of the transmission parameters may also be estimated (e.g. 
population size and use-life)39 - or we can at least determine their lower and 
upper boundaries. 

Another important lesson is that the patterns of typological variation are not 
absolute and do not depend entirely on the nature of the transmission process 
(e.g. whether copying from other settlements is frequent or rare), but also 
depend on the scale of spatial and temporal observation. Relative and absolute 
chronological schemes which depend on extrapolating typological sequences 
from key regional sites (e.g. large tells with deep stratigraphies) can work 
only on spatial scales where interaction is such that temporal variation affects 
the structure of the assemblages more than spatial variation. This is certainly 
not new. It was postulated a long time ago that one of the assumptions of the 

38  This may be feasible if one studies cultural change between two major chronological phases in one 
region, if the phases are of similar duration (the width of the temporal window) and if time-aver-
aging intervals are similar for most assemblages. In this case, if the pattern of correlation changes 
from one phase to another, then we can infer that the degree of interaction has changed, if it can be 
assumed that other transmission parameters are constant.

39  In theory, we could also try to estimate the mutation rate from the archaeological data (Shennan 
and Wilkinson 2001), but this requires large samples, as this process may be prone to biases (Porčić 
2015). 
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seriation method is that the assemblages to be seriated must come from a 
limited spatial area (Dunnell 1970; O’Brien & Lyman 1999:117-118). The limit-
ed space is only a proxy for the radius of interaction, which is actually the key 
variable. The cultural transmission theory allows us to explore the implica-
tions of different levels of interactions and different scales of spatio-temporal 
observation, in order to create a referential frame against which the empirical 
evidence can be projected.

6.4.  EMPIRICAL PATTERNS

6.4.1.  Looking at the archaeological record

In this section, I will look at archaeological case studies where the quantita-
tive data on type frequencies in assemblages is available. Such data sets are 
rarely available because they require a lot of time and great effort to gener-
ate, but they are precious, as they represent a “phenotypic” description of the 
archaeological record suitable for quantitative analysis. The same statistical 
instruments and observational procedures that were used to summarize and 
explore the simulated archaeological record will be used here to summarize 
and explore the empirical archaeological record from several case studies from 
different spatial, temporal and cultural contexts: the Iroquoian pottery dec-
oration data from the 14th to 17th centuries A.D. North America (Hart et al. 
2016), the prehistoric Baden culture pottery decoration data (~3600-2900 BC) 
from central Europe (Furholt 2009), and the data set on the pottery forms and 
personal ornaments from the Neolithic of Western and Central Europe (Shen-
nan et al. 2015).

The aim of this exercise is to see whether any of the simulated patterns can 
be found in the real-world data. From the epistemological perspective, this 
should be seen as a soft version of theory testing. I refer to it as “soft” for two 
reasons. First, these models are not meant to be general models of cultural 
transmission that are assumed to be present in all times and places. The pre-
dictions are only valid for a specific kind of model with a specified parameter 
range. If the process of transmission unfolded according to some other model, 
then the predictions based on the experiments presented in this chapter are 
irrelevant. Second, the empirical cases do not contain all of the necessary in-
formation to perform the proper testing (representative spatial and temporal 
sampling of assemblages, sufficient temporal resolution). Therefore, this will 
be exploratory research, to see if anything similar to the patterns predicted by 
the simulated models can be found in the random sample of the archaeological 
record. The rationale is that if the neutral transmission is a good generative 
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model, or at least a good approximation, for the stylistic variability of material 
culture in time and space, we should see some of the patterning predicted by 
the simulations in the real world as well. 

6.4.2.  Iroquoian pottery

Hart et al. (2016) recorded and used the pottery collar decoration data to ana-
lyze the Iroquoian interaction networks in Southern Ontario from the 14th 
to 17th centuries A.D. For each assemblage, they provided data on individual 
motif frequencies and the temporal designation into one of the 50-year peri-
ods from 1300 to 1650 A.D. The geographic distance matrix between each pair 
of sites is also given. Therefore, this kind of data is comparable to the sim-
ulated data in this chapter – the width of the temporal window is 300 years, 
the degree of time-averaging is around 50 years, and the maximal distance 
between two sites in the study region is 359km. I am ignorant concerning the 
estimates of the average use-life of the Iroquoian pots, but the cross-cultural 
ethnoarchaeological evidence suggests that the average use-life for pots varies 
between 1 and 5 years (Varien & Mills 1997). Therefore, we would expect time 
rather than space to be the main factor that structures the variation between 
assemblages.

The CA analysis was performed on the pottery collar decoration frequency data 
from Hart et al. (2016). The CA axes 1 and 2 account for 25.1 and 10.1% of 
variance, respectively. The assemblages form an arch pattern in the CA space 
(Figure 6.21). The temporal dimension is constructed by assigning the value 
of the midpoint of the appropriate temporal interval to each assemblage. The 
major spatial direction variable is constructed as the first axis of the metric 
multidimensional scaling analysis (MDS) applied to the matrix of geograph-
ic distances between the assemblages, which accounts for 64.5% variance in 
spatial distances.
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Figure 6.21.   Results of the correspondence analysis performed for the Iroquoian pottery data from 
Hart et al. (2016): the configuration of assemblages and types in the space defined the 
first two CA axes.

Now we can calculate the correlation between temporal, spatial, and typolog-
ical dimensions, as was done for the simulated data. The results suggest that 
the major typological axis (CA axis 1) is correlated with time rather than space 
(Table 6.3, Figure 6.22). The correlation between the CA axis 1 scores and time 
is -0.63. The correlation between the CA axis 1 and the major spatial direction 
is low (0.07) and not significant (Figure 6.23). It is the second typological di-
mension, reflected by the CA axis 2, which correlates moderately with space (r 
= 0.56, p < 0.001). 

CA axis 1 CA axis 2 Major spatial 
direction Time

CA axis 1 1 -0.12 0.07 -0.63*

CA axis 2 1 0.56* 0.04

Major spatial 
direction 1 -0.21

Table 6.3.   Pearson correlation coefficients between major typological dimensions, major spatial di-
rection (the first MDS axis of the spatial distances matrix), and time.

*significant at the 0.001 level
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This pattern is confirmed by the matrix correlation between typological, spa-
tial and temporal distances. The correlation coefficient between the BR dis-
tances and the temporal distances is 0.24 (Mantel test p < 0.005), whereas 
the correlation of the BR distances with the geographic distances is low and 
not significant at the 0.05 level (r = 0.08, Mantel test p = 0.076) (Figure 6.24). 
The correlation between spatial distances and the BR similarity coefficients40, 
on the other hand, are much higher and significant when they are calculated 
within each time period, and range between -0.14 and -0.52 (Hart et al. 2016: 
Table 2). This is exactly what we would expect – the reduction of the temporal 
window width increases the spatial effects. 

Figure 6.22.   The correlation between time and the CA axis 1 for the Iroquoian pottery data from Hart et 
al. (2016).

40  Technically, Hart et al. (2016) are using BR similarity coefficients rather than BR distances, but this 
only influences the sign of the correlation coefficient, not its value, as BR similarity and distance are 
complementary measures – see Chapter 3.
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Figure 6.23.   The correlation between the major spatial direction and the CA axis 1 for the Iroquoian 
pottery data from Hart et al. (2016).

If all other things were equal, we might have been inclined to conclude that the 
interaction between Iroquoian settlements was relatively high, and that there-
fore the temporal differences between assemblages are more pronounced than 
the spatial differences. This is in broad agreement with the results of Hart et 
al. (2016), who demonstrated that interaction networks between distant Iro-
quoian communities were present. 

Figure 6.24.   The correlation between typological (Brainerd-Robinson) distances, spatial distances 
(left) and temporal (right) distances (based on data from Hart et al. 2016).
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6.4.3.  The variability of the Baden culture pottery

The Baden culture is a traditionally defined archaeological culture which occu-
pied a large area of central Europe and northern parts of southeastern Europe. 
In southeastern Europe it is considered a Eneolithic (Copper Age) culture (Tasić 
1995), whereas in the north it is labelled as a Late Neolithic culture (Furholt 
2009). The temporal span of this archaeological phenomenon was roughly be-
tween 3650 and 2800 B.C. (Horváth et al. 2008; Furholt 2009). Furholt made 
a detailed quantitative analysis of the Baden culture pottery by systematically 
recording pottery decoration motif frequencies from settlement assemblages 
in his core study area, which included Moravia, Upper Silesia and Lesser Po-
land (Furholt 2008; 2009). Furholt’s (2009) data provide a rare opportunity to 
rigorously study the patterns of material culture variation in space and time, 
as the great number of assemblages were described and quantified according 
to a uniform recording scheme. 

Correspondence analysis was applied, resulting in the horseshoe-shaped pat-
tern (Figure 6.25) which Furholt convincingly interpreted as the temporal 
ordination of assemblages, by making a comparison with the available ra-
diocarbon evidence (Furholt 2009: 65-78). Therefore, we already see that in 
this case it is the temporal dimension which structures the typological var-
iability. The spatial scale of Furholt’s analysis is similar to the spatial scale 
of the simulation space. Furholt’s study area has an approximate area of 200 
x 400km, with the major axis of spatial variation being the East-West axis 
which is around 400km long, whereas the simulated region is a rectangle with 
dimensions 100 x 400km, assuming that each cell is a square with 10 km-long 
sides. Therefore, this result is quite expected, given that the temporal window 
has a width of 700 years and the duration of individual Baden assemblages is 
unlikely to be greater than 50-100 years.
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Figure 6.25.   The configuration of Baden pottery assemblages in the typological space defined by the 
first two CA axes performed on the data from Furholt (2009).

We can further explore Furholt’s core data set by calculating the correlation 
coefficients between the major spatial direction and the CA axes, as well as the 
Mantel correlation between geographic distances and typological distances (as 
measured by the Brainerd-Robinson and Jaccard coefficients). The major spa-
tial direction is taken to be the first principal component of the transformed 
(from degrees to km) geographical coordinates of the assemblages, which ac-
counts for 98.2% of variance in the assemblage positions. The correspondence 
analysis suggests that the CA axis 1 and CA axis 2 account for 9.2% and 6% 
of the total variance, respectively. CA axis 1 is moderately correlated with the 
major spatial direction (r = 0.52, p < 0.001; Figure 6.26). The correlation co-
efficient between the spatial distances on one side and the BR on the other, 
are very weak: 0.17 (p = 0.001 (Figure 6.27). In general, the Baden situation 
corresponds to the experiments where time is the more important structuring 
factor of the typological variability, but there is a moderate correlation with 
the major spatial direction.
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Figure 6.26.   The correlation between the major spatial direction and CA axis 1 scores based on the 
Baden pottery data from Furholt (2009).

This may reflect the mixed effect of parameters pulling towards space- or 
time-dominated structures, but it may also be due to the confounding of space 
and time. The confounding of space and time in the typological dimension 
may occur when space and time are correlated. This may arise when sampling 
is biased and uneven, i.e. if there are more early or late assemblages in one 
part of the study area than in another, or if there are directional migrations or 
diffusion – e.g. the expansion of the Neolithic in Europe implies that there will 
be a priori correlation between time and space, as the earliest assemblages will 
always be clustered at the southeasternmost part of the study area. This effect 
is even more pronounced in the next case study. 
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Figure 6.27.   The correlation between typological (Brainerd-Robinson) distances, spatial distances 
(left) and temporal (right) distances (based on data from Hart et al. 2016).

6.4.4.  Pottery and personal ornaments in the Western and Central 
European Neolithic

The quantitative data on the presence and absence of pottery decoration, pot-
tery shapes and personal ornaments types, were recorded by Shennan et al. 
(2015) for almost 200 Neolithic sites in Western and Central Europe, spanning 
approximately 3000 years and 2500km (the major spatial direction of the spa-
tial distribution sites is approximately from the east to the west). For each site, 
the authors recorded the spatial and temporal positions. The temporal win-
dow is the period between 5500 and 2450 BC, whereas the average assemblage 
duration is 350 years. Based on the simulations presented in this chapter, we 
would expect time to be the main structuring factor of the material culture 
variability for such wide temporal window, but in this case, the spatial window 
is much greater than the simulated space (the direction of the major spatial 
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direction is 2500km, compared to only 400km in the simulations). In order to 
summarize the typological variation, multidimensional scaling (MDS) analysis 
is applied to the matrices of Jaccard distances between sites, based on pottery 
and ornaments data from Shennan et al. 2015 (Figure 6.28). For the pottery 
data, the first and the second MDS dimensions account for 9.6 and 6.1% of 
variance, respectively. For the ornament data, the MDS axis 1 and MDS axis 2 
account for 10.4 and 6% of variance, respectively. 

Figure 6.28.   The configuration of the West and Central European Neolithic assemblages in the typo-
logical space defined by the first two axes of the multidimensional scaling analysis for pot-
tery (left) and personal ornaments (right) (data from Shennan et al. 2015).

The pattern of correlations between the dimension of typology, space and time 
is complex for the pottery data. The major dimension of typological variabil-
ity, the MDS axis 1, is weakly correlated with time (r = -0,325, p < 0.001) and 
latitude (r = -0.232, p < 0.001), with no significant correlation with longitude 
(r = 0.109, p = 0.065), which is the major spatial direction for the distribution 
of sites. The MDS axis 2, on the other hand, is moderately correlated with time 
(r = -0.505, p < 0.001) and latitude (r = 0.493, p < 0.001), and weakly corre-
lated with longitude (r = 0.245, p < 0.001). In order to better understand this 
result, principal component analysis with orthogonal Varimax rotation was 
applied to the correlation matrix in Table 6.4. Three rotated components are 
extracted which explain 37.2%, 25.9%, and 21.1% of variance. The correla-
tions between the original variables and rotated components are given in the 
loading matrix in Table 6.5. The first component is defined by the MDS axis 
2, time and latitude. The second component is defined primarily by the MDS 
axis 1, with moderate contribution from time, whereas the third component 
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is defined only by longitude. Therefore, the temporal dimension is the most 
important dimension structuring the formal variability of material culture, 
but it is significantly confounded by space. It should be noted that latitude and 
time are also weakly correlated (-0.315, p < 0.001), suggesting that there is a 
weak but significant tendency for the northern sites to be more recent than 
the southern ones. This is quite to be expected, given that the Neolithic arrived 
at different times in different parts of Europe; and in this case, it seems that 
this primarily reflects the difference between sites in Britain and Denmark, 
as there were no Neolithic sites in these regions before ~4000 BC. For this 
reason, the spatial direction which structures the typological variability is the 
N-S direction rather than the E-W direction. When we look at the correlations 
between the typological (Jaccard distance), spatial (Euclidean), and temporal 
(Euclidean) distance matrices, they are very low: 0.06 (Mantel test p = 0.065) 
for the correlation between spatial distances and typological distances, and 
-0.06 (Mantel test p = 0.96) for the correlation between temporal and typo-
logical distances (Figure 6.29).

Figure 6.29.   The correlation between typological (Jaccard) distances, spatial distances (left) and tem-
poral (right) distances (based on the pottery data from Shennan et al. 2015).

The fact that there was an actual expansion of the population in space and 
time is what makes this situation different from the simulations which are 
demographically static. The major spatial direction, which is the geographic 
longitude i.e. the east-west direction in this case, seems not to be the major 
structuring factor of the material culture. This is rather strange in the light of 
the simulation results, given the vastness of the spatial scale – for such a large 
area it would seem reasonable to expect the spatial variation to dominate. 
This discrepancy can be explained by the fact that, unlike in the simulations, 
there was a population movement in Neolithic Europe which makes the static 
simulation models irrelevant for this empirical data. It could also be that the 
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resolution of the assemblage composition reduced to presences and absenc-
es is masking the spatial variation which is primarily reflected in changing 
frequencies, whereas it makes the temporal variation more important as the 
mutations directly create presences. 

MDS1 MDS2 Latitude Longitude Time

MDS1
Pearson’s r 1 0.000 -0.232* 0.109 -0.325*

N 195 195 195 195 195

MDS2
Pearson’s r 0.000 1 0.493* 0.245* -0.505*

N 195 195 195 195 195

Latitude
Pearson’s r -0.232* 0.493* 1 0.035 -0.315*

N 195 195 195 195 195

Longitude
Pearson’s r 0.109 0.245* 0.035 1 -0.012

N 195 195 195 195 195

Time
Pearson’s r -0.325* -0.505* -0.315* -0.012 1

N 195 195 195 195 195

Table 6.4.   Correlations between the typological, spatial and temporal dimensions for the Western 
and Central European Neolithic pottery data (from Shennan et al. 2015).

* Correlation significant at the 0.01 level (1-tailed).

Rotated Component

1 2 3

MDS 1 -0.108 0.923 0.092

MDS 2 0.836 0.086 0.256

Latitude 0.818 -0.302 -0.043

Longitude 0.080 0.050 0.980

Time -0.687 -0.584 0.129

Table 6.5.   The rotated component loading matrix showing the correlations between the orthogo-
nally rotated principal components and the original variables for Western and Central Eu-
ropean Neolithic pottery data (from Shennan et al. 2015). Correlations higher than 0.5 or 
lower than -0.5 are in boldface.

For the personal ornament data, the patterns are completely different (Figure 
6.28; Table 6.6). The major typological dimension (MDS axis 1) has a moder-
ately strong correlation with the longitude, which is the major spatial direction 
in this case (r = 0.712, p < 0.001). The second important typological dimension 
(MDS axis 2) is moderately correlated with time (r = 0.450, p < 0.001). These 
results are consistent with the correlations between the distance matrices: the 
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correlation between spatial and typological (Jaccard) distances is 0.14 (Mantel 
test p = 0.001), and the correlation between temporal and typological distances 
0.3 (Mantel test p = 0.001) (Figure 6.30).

In the case of personal ornaments, the spatial variation is more important 
than the temporal variation in structuring the variance of the assemblages, 
when we look at the MDS axes. Whether this is an effect of the vast amount 
of space or the lower level of intercommunity copying rates is difficult to say 
without further analysis. 

MDS1 MDS2 Latitude Longitude Time

MDS1
Pearson’s r 1 0.000 -0.157* 0.712* 0.020

N 166 166 166 166 166

MDS2
Pearson’s r 0.000 1 0.060 0.013 0.450*

N 166 166 166 166 166

Latitude
Pearson’s r -0.157* 0.060 1 -0.003 0.487*

N 166 166 166 166 166

Longitude
Pearson’s r 0.712* 0.013 -0.003 1 0.082

N 166 166 166 166 166

Time
Pearson’s r 0.020 0.450* 0.487* 0.082 1

N 166 166 166 166 166

Table 6.6.   Correlations between the typological, spatial and temporal dimensions for Western and 
Central European Neolithic pottery data (from Shennan et al. 2015).

* Correlation significant at the 0.05 level (1-tailed).

Figure 6.30.   The correlation between typological (Jaccard) distances, spatial distances (left) and tem-
poral (right) distances (based on data from Shennan et al. 2015).
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What is interesting is that the two classes of material culture, pottery and 
personal ornaments, seem to have had different underlying transmission dy-
namics. This was clearly shown by Shennan et al. (2015), and is also apparent 
in the results of the current analysis. Given that the spatio-temporal window 
and the assemblage durations are similar for these two classes of material 
culture, the results of the simulations from this chapter would suggest several 
non-exclusive hypotheses for the observed patterns: 

1)  The intercommunity copying rate (the interaction) is not the same for pot-
tery and personal ornaments, i.e. the probability of copying from a different 
community was higher for pottery than for personal ornaments. Given the 
potential importance of personal ornaments for group identity, the lower 
degree of transmission or lower distance of transmission would make sense.

2)  The average use-lives for pottery were shorter than for the personal orna-
ments. While the use-life estimates for pottery can be reliably made from 
the ethnoarchaeological and ethnographic data, and are usually between 
~1 and ~5 years for all classes except for storage pottery (Varien and Mills 
1997), I am not aware of the use-life estimates for personal ornaments. 
Again, given their importance for personal (or group?) identity, I would 
speculate that they have much longer use-lives than pottery e.g. in the 
range of decades rather than years. If this is true, it would make the tempo-
ral dimension less important in the case of personal ornaments. 

3)  The systemic number of pottery vessels was higher than the number of 
personal ornaments, therefore the pottery population size was effectively 
larger than the ornament population size. There are usually more pottery 
vessels in a household than people, whereas the number of personal or-
naments in use is more likely to be closer to the actual number of people. 
Given that the systemic number of objects that I referred to as the popu-
lation size is positively correlated to temporal domination in structuring 
assemblages, the implication would be that we would expect time to have 
more structuring influence in the case of pottery than in the case of per-
sonal ornaments. If the mutation rate is equal for pottery and for person-
al ornaments, we could make the additional empirical prediction that we 
should have more types/variants for pottery than for personal ornaments. 
In theory, we could check this prediction by counting and comparing the 
number of pottery types to personal ornament types. However, this is not 
possible in this particular case, as personal ornaments are described as 
presences and absences of types corresponding to discrete objects, whereas 
pottery assemblages are described as presences and/or absences of shape 
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types and vessel decorations, so the potential number of paradigmatically 
defined types (based on the intersections of morphological types and dec-
oration variants) is much larger than the number of shapes or decorations 
alone, as they can be combined. This is further complicated by the fact that 
the definition of types (i.e how the material is classified into types, that is 
to say, how the boundaries between types are defined) can influence the 
results. This problem has wider importance in archaeology, far beyond this 
particular hypothesis, and it will be discussed in detail in the next chapter. 

4)  The mutation rate was greater for the pottery than for the personal orna-
ments. As elaborated in Chapters 2 and 3, the mutation rate has two com-
ponents – in other words, the introduction of a new type/variant may occur 
for one of two reasons. The first reason is the copying error and the second 
reason could be the intentional action proceeding from the conscious de-
cision to innovate. I am ignorant as to whether there are any differences 
between these two classes of material culture in terms of the copying er-
ror. As for the intention to innovate, it is unknown whether it makes sense 
to assume that some classes of material culture are more likely to have a 
higher baseline probability of being innovated then some others. In theo-
ry, we could try to estimate the copying error experimentally for the two 
classes of material culture, and we could try to estimate the mutation rate 
from archaeological data, but both of these options are extremely difficult 
to conduct in practice. Therefore, this hypothesis is very difficult to test. 

5)  The attributes of pottery vessels and personal ornaments were transmitted 
in accord with different transmission models. I explored the neutral model 
and its consequences in this chapter for the sake of convenience and be-
cause it is the baseline model, but there is nothing to guarantee that this 
is the right model for any of them, or that both classes of material culture 
were transmitted in the same way. This hypothesis would require further 
theoretical research and further empirical research.

6.5.  SUMMARY OF THE EMPIRICAL CASE STUDIES

To be clear, I cannot give a definite answer to the question of why Neolith-
ic pottery and personal ornaments show different patterns of spatiotemporal 
variation, or what exactly is the reason for the patterns observed in Iroquoian 
or Baden pottery, as I cannot test any of the hypotheses proposed above owing 
to a lack of data. But this was not the purpose of this exercise. The idea was 
to demonstrate that the similar patterns as predicted by the models of cul-
tural transmission implemented via computer simulation can be identified in 
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the archaeological record. Even more important is that the knowledge gained 
through the theoretical work in this chapter allows us to formulate hypotheses 
which are testable both in principle and in practice, with further efforts di-
rected at data collection. Moreover, the simulations provide us with means of 
trying out different parameter values so we can use the parameter values that 
can be estimated empirically as input for the simulations and conduct a pa-
rameter search for those that cannot be easily estimated from the archaeolog-
ical data (e.g. in an Approximate Bayesian Computation framework research 
such as Crema et al. (2014a; 2016) and Kovacevic et al. (2015)). 
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CONCLUDING THOUGHTS

7.1.  THE CONTRIBUTION

My main intention with this book has been to use the theoretical framework 
of cultural transmission theory in order to explore some of the classic prob-
lems of archaeological inquiry. The reader may ask why this particular the-
ory is better than some other theory, and what is new here? Obviously, most 
of the problems discussed in this book are as old as archaeology itself. The 
computer simulations and most of the statistical tools are also not new, and 
have all been used many times before in order to study the formal variability 
of material culture in space and time. Even the idea of cultural transmission 
i.e. diffusion of culture, is an old anthropological concept implicitly present 
in anthropology and archaeology from an early stage (Eerkens & Lipo 2007). 
However, the prospect of modeling some aspects of culture as population phe-
nomena, where descent with modification occurs, opens up many theoretical 
and methodological possibilities for archaeologists. The structure of cultural 
transmission theory, especially its reliance on quantitative models, makes it 
possible to model dynamically the generative processes of the formal variabil-
ity of material culture, and explore the many possible (pre)histories and track 
their fingerprints in the archaeological record. I hope that the simulations in 
this book clearly illustrate this point. 

As the research for this book progressed, I began to wonder if the findings I 
have presented were trivial, in the sense that everyone would know what to 
expect from a model without simulations. For example, anyone familiar with 
isolation by distance in biology could have predicted that we would have spa-
tial gradients of variants across space. It seems to me that this impression of 
triviality is only partly true. Someone with a background in population genet-
ics or quantitative modeling in general would probably be able to predict what 
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the equilibrium pattern would be like, but on the other hand, it would be very 
difficult to specify how much time would it take for a system to reach equilib-
rium, or what parameter combinations would lead to one outcome rather than 
another. The fact that the simulations have been parametrized in such way 
as to emulate a generic preindustrial or prehistoric situation is what makes 
the results useful for archaeological middle-range theory-building (in both 
senses of the term “middle-range”). Finally, the match between the patterns 
generated by the simulations of the neutral transmission in space, the empir-
ical patterns, e.g. the clines in the frequencies of cultural variants revealed by 
Shennan (1978) in the seminal study of the Bell Beaker archaeological culture, 
completes the circle which connects the theory and data in our understanding 
of the problem of archaeological cultures. Just as Neiman’s (1995) simula-
tions demonstrate how the patterns in time arise from this simple model of 
transmission, we can see how the patterns in space can also be generated by 
the same model. This does not mean that the neutral model is responsible for 
generating the patterns that we identify as archaeological cultures in all times 
and all places, but it stands as a possible indication that we do not necessarily 
need anything more complicated than this model to explain the patterns that 
we see. This clearly shows how we can go beyond archaeological cultures, to 
study spatial variation in the analytical and systemic way proposed and an-
ticipated by David Clarke a long time ago (Clarke 1978). However, the fact that 
simple models which do not assume anything about group identity, such as 
the neutral model, can produce spatial structuring of material culture, does 
not mean that in principle there can be no groups which also produce distinct 
material culture. The reality of archaeological cultures as discrete phenomena 
needs be established on a case by case basis (Shennan et al. 2015). 

The usefulness of a theory is, among other things, measured by its ability 
to generate testable hypotheses. This feature of cultural transmission theo-
ry has been demonstrated in all three key chapters of this book. Perhaps the 
most illustrative examples come from the previous chapter. I first used cul-
tural transmission theory to model the past dynamics, and then I theoreti-
cally explored the effects of transmission and observational variables on the 
resulting patterns. This was an exercise in theory-building, and the end result 
of this purely theoretical investigation was information about how the rele-
vant parameters individually and through interactions structure the patterns 
of variation of material culture in time and space. When patterns similar to 
the ones encountered in the simulations were identified in the archaeological 
record, I was able to formulate hypotheses based on the background theoret-
ical knowledge. 
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Another example is the relation between time-averaging and unimodality.The 
phenomenon of unimodality has been explored in Chapter 5. The results con-
firm what other researchers, such as Madsen (2020), have suggested. Unimo-
dality is not a defining criterion of the seriation sequence. The semblance of 
unimodality, or in rare cases the perfect unimodality of types, that we observe 
in the archaeological record is the consequence of the transmission process 
in combination with time-averaging. The imperfect unimodality of sequences 
is not a result of a sampling error, but a feature of the transmission process 
itself, and of the fact that the equilibrium is dynamic rather than static, as 
stochastic noise is always present. Surprisingly, unimodality and seriation ac-
curacy are only weakly correlated, but this conclusion is limited to the corre-
spondence analysis as a seriation technique. 

The results of the research presented in Chapter 5 can also be viewed as yet 
another empirical corroboration of cultural transmission theory, as the pre-
dictions of the theory regarding the increase of unimodality as a function of 
increasing degree of time-averaging were borne out by the empirical evidence 
when archaeological assemblages were time-averaged by merging the assem-
blages from the adjacent stratigraphic units. The theory also predicts the pat-
terns of temporal intensity of archaeological cultures.

7.2.  THE LIMITATIONS, AND PROSPECTS FOR FURTHER 
RESEARCH

7.2.1.  General comments

The research presented in this book is limited in many ways, and I will try to 
cover explicitly all the major weaknesses and limitations that I am aware of. 
The identification of limitations is important for the critical evaluation of re-
sults and for defining the prospects for further research to overcome the lim-
itations. Many of these crosscut the most fundamental issues in archaeology 
regarding the systematics and the construction of typologies, so ideas about 
how to solve this problem from the perspective of the cultural transmission 
theory should be seen as an indirect contribution of the theoretical exercises 
in this book.

The limitation which seems most apparent is that the number of models and 
the range of parameters explored are small. Therefore, the simulation exper-
iments undertaken in this book are neither comprehensive nor systematic. 
There are many models which were not explored (e.g. prestige bias, guided 
variation, cultural selection...). 
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7.2.2.  Demographic aspects

Perhaps the greatest conceptual limitation of the simulations presented in the 
previous chapters is the lack of demographic dynamics. All of the models and 
scenarios presented assume that the population size is stationary – it neither 
grows nor declines in size, as there are no changes in fertility, mortality, or 
migration rates. Therefore, such models are relevant only for situations where 
population fluctuations are relatively small. It may be argued that at the mil-
lennial scale, and with the exception of major demographic processes such 
as the Neolithic demographic transition (Bocquet-Appel 2011), this was true 
for most of prehistory. However, there were certainly fluctuations at smaller 
temporal scales, and the theory suggests that changes in the population size, 
and especially booms and busts, must have had significant implications for the 
formal variability of the material culture in time and space (Rorabaugh 2014; 
Shennan 2000; 2013; Shennan & Bentley 2008). The inclusion of the demo-
graphic dynamics would not only make the models more realistic but would 
add a significant theoretical dimension. Among other things, it would be use-
ful to see how population growth and decline influence the temporal patterns, 
and how this may affect seriation. 

7.2.3.  Equilibrium assumption

Another major limitation of this study is the equilibrium assumption, which is 
not realistic in most cases. So the simulations presented here are also static in 
this sense. I am assuming in the simulations that a single transmission model 
is valid for hundreds and thousands of years, and I am mostly looking at the 
patterns when the system is in the equilibrium. The lack of demographic vari-
ability precludes any temporary deviations from equilibrium. The models with 
the equilibrium assumption may be useful for theoretical considerations, but 
for practical purposes, non-equilibrium models are more suitable and effec-
tive (Kandler & Shennan 2013; Crema et al. 2016).

7.2.4.  The range of spatial interaction

The interaction between communities has at least two aspects which can be 
modelled: frequency and range of interaction. In this book, I have kept the 
range constant by always using the inverse of the squared distance as a kind of 
generic and default value for preindustrial communities. Only in Chapter 4 do I 
brief discuss the effects of the spatial range of interaction on pattern in space; 
in general, this topic remains underexplored in this book (for example, I did 
not vary this parameter in any of the experiments in Chapter 6). The spatial 
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range of interaction can depend on the technology of transport (e.g. horse) or 
on the political geography, so it is nor unreasonable to suggest that this pa-
rameter of interaction varied in the past (in other words, that in one phase the 
interaction was more local, whereas in another the range was wider), which 
should be reflected in the spatial patterns of stylistic variability of material 
culture. This remains to be explored in the future, and the simulations pre-
sented in this book can be used to do so. 

7.2.5.  The scale of transmission and the number of attributes

Another set of limitations is to be found in the way the traits are modeled. I 
simulated the transmission process of a single meme without specifying the 
scale. For example, the simulated variants and types may be thought of as 
states of a single attribute, such as anthropomorphic figurine eye types or 
vessel decoration motifs, or as morphological types (e.g. bowl shapes). This 
kind of modeling follows an established tradition in cultural transmission re-
search, but it does not allow for exploring the complexities that may arise 
when different attributes are transmitted in accord with different models, es-
pecially in combination with the practice of archaeological systematics – the 
construction of types from attributes. For example, how do the frequencies of 
paradigmatically defined types behave in space and time when the attributes 
used to define the types are transmitted in different ways? This would require 
a multilevel modeling – multiple attributes would be copied and the types 
would be constructed based on the attribute states. 

7.2.6.  Modeling the mutation event

I treated the meme variants or types as discrete entities in the simulations. 
The apparent limitation is that the mutations are simulated rather mechan-
ically. What was not simulated is the fact that perfect copying fidelity is not 
possible for material culture (at least in not in preindustrial times). As noted 
in Chapter 3, the mutations are modeled as a cultural equivalent of an infinite 
allele model in population genetics (Ewens 2004: 111-119). When a mutation 
occurs, a new variant is simply added to the pool of existing variants without 
distinguishing whether the mutation arose as a result of the copying error or 
as a deliberate innovation, i.e. there is no information as to how similar it is to 
the previous variants. This makes it hard to make a correspondence between 
the number of variants observed in the archaeological record and the number 
of variants in the simulated assemblages. As noted, the determination of the 
number of variants or types is a complex issue in archaeology (Dunnell 1971; 
Lyman 2021a). In the empirical examples presented in the chapters of this 
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book, we do not see as nearly as many variants in the archaeological record 
compared to the number of mutations that we get in the simulations, even 
with very low mutation rates. Part of this difference can be explained by the 
fact that archaeological assemblages are usually very small fractions of the 
population of produced and accumulated items. But the central issue seems to 
be the definition of types. 

It should also be noted that mutations are modeled in such a way that each 
mutation always produces a completely new variant – it is assumed that the 
potential number of variants is infinite (for an infinite allele model, see Ewens 
2004: 111-119). This rules out the possibility of rediscovering some variants 
which have been lost in previous time steps. This is obviously not realistic, 
as it might happen that some long-lost variant will be rediscovered at some 
point by coincidence. The impact of this possibility should be explored in the 
future, especially for those attributes which do not have an ample space to 
vary. Again, this is related to the issue of what really counts as a new variant. 

7.2.7.  The modeling of types – problems with the reality and 
discreteness of meme variants

For the broad brush strokes of the theoretical explorations undertaken here, 
this rough and unsophisticated way of modeling is sufficient. However, the 
issue of systematics is critical for modeling the generating processes for the 
purposes of empirical research. How we define types and how we measure 
mutation rates must be comparable between the models and the observations 
that we make on the artifacts. Whether a particular instance will be classified 
as mutation or assigned to an existing type will depend on the resolution of the 
classification. Let us look at the eye types of the anthropomorphic figurines 
from the Central Balkan Late Neolithic that were used to illustrate the effects 
of time-averaging on unimodality in Chapter 5. Should the similar specimens 
be considered as manifestations of a single type, or should they all be classified 
as different types because they are not completely identical?  This is the old 
“lumper” vs. “splitter” dilemma of the typologist. Paradigmatic classification 
cannot resolve this problem, even when the attributes are continuous dimen-
sions – if we want discrete classes for occurrence or frequency seriations, the 
degree of lumping/splitting will depend on the width of the intervals by which 
we choose to divide the continuous variation into discrete classes. If the types 
are defined by lumping too much variability into the same class - I will call 
this typological averaging -, then the spatio-temporal patterns may be ob-
scured and the mutation rate will be low. The same effect will occur if the mu-
tation does not exclusively involve the invention of an absolutely (never before 
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invented) novel variant, e.g. if a lost type/variant is reinvented by accident 
(or by intention). Therefore we have a rather unsatisfactory situation that the 
number of types, i.e. our observational units, partially determines the patterns 
that we may observe.

Are the types real? Are the types discrete? These are two conceptually different 
but practically related questions. The question of the reality of types brings us 
back to the Ford-Spaulding debate (Ford 1954a; b; Spaulding 1953). The de-
bate was summarized by O’Brien and Lyman (2000: 207-213) and expressed in 
terms relevant for cultural transmission theory, so I present their account of 
the debate here. In this debate, Spaulding’s position was that there were real 
socially relevant and recognized (emic) types in the past which could be recon-
structed by statistically exploring the associations of attributes. Ford, on the 
other hand, was not concerned with the discovery and reconstruction of real 
types (e.g. cultural or emic classifications of material culture). His position 
was that types should be constructed by the analyst for a purpose – in his case, 
the purpose of constructed types was to measure time. In Ford’s view, analyt-
ical types were arbitrary constructions produced by the archaeologist in such 
a way as to be maximally chronologically sensitive. So, from one perspective, 
types are certainly real, in the sense that there must have been concepta (sensu 
Clarke 1978) in people’s minds of some culturally recognized types. On the 
other hand, we know that there are no two identical objects – variation is the 
only real thing. Even when potters aim to reproduce exactly the same object 
there are always intra-individual and inter-individual variations in the shapes 
of the finished products (Gandon et al. 2018; Gandon et al. 2020; Gandon et al. 
2021). This is so because copying error is always present (Eerkens 2000; Eerk-
ens & Lipo 2005; Premo 2020; Hamilton & Buchanan 2009; Kempe et al. 2012). 
Cultural transmission theory resolves the ontological dilemma between es-
sentialism and materialism which stands behind the Ford-Spaulding debate. 
The view that types are real is essentialist, whereas the idea that only vari-
ation is real and that types are analytical constructs is a materialist position 
(O’Brien & Lyman 2000). Cultural transmission theory implies that they are 
both. The person who copies an object or an attribute of an object is copying 
(or reconstructing in her/his mind - -see Scott-Phillips 2017) a certain meme, 
a cultural variant. But this process inevitably introduces error and variation, 
which at some point may become part of the meme variant itself. 

The difficulty with types may be illustrated by an example. Let us consider a 
single continuous attribute of an object or, even better, a continuous dimen-
sion which summarizes the shape of an object (e.g. the first principal compo-
nent of the morphometric analysis). Imagine that this variable is distributed 
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as in the graph in Figure 7.1 - the distribution is trimodal, which means that 
individual measurements cluster around three particular values. How do we 
interpret this? One possible interpretation would be that there are three types 
and people are trying to copy one of the three types. Due to copying errors, 
people cannot exactly reproduce the shape of an artifact, so there is a variation 
around the mean for each type. The types are discrete in people’s heads, but 
the copying process creates a continuum of values. This is Read’s rationale for 
the identification of types from empirical data (Read 2007). However, another 
interpretation is also possible. We can say that there are an infinite number 
of types (for each possible value of the dimension in the graph), whereas the 
distribution in Figure 7.1 is telling us about the frequency of copying for each 
type (plus error). 

Figure 7.1.   The histogram of a hypothetical metric variable or a morphometric summary dimension 
(e.g. principal component scores based on a number of correlated metric attributes).
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This digression finally leads us to the following question. Is it useful that our 
theory and models be formulated in terms of discrete variants, or would it be 
better to develop the transmission models which are expressed in terms of 
continuous variables? Should we strive for the total phenotypic description of 
material culture (e.g. as in the geometrical morphometric approach), rather 
than define broad types? Perhaps we do not need to perform discretization, at 
least for the classification of shape, as was necessary before, but can work di-
rectly at the very high resolution provided by the direct numerical description 
of the shape. Thus it would make sense to explore the implications of cultural 
transmission on the probability density distributions of continuous attributes 
in a similar way as was done for the frequency structure of discrete variants 
and types (e.g. Rorabaugh 2014). The issue of systematics has generally been 
underrated and neglected in archaeology (Lyman 2021b; a), and the research 
in this book suffers from the same problem, as I have simulated the types/
variants as ready-made without delving into how they are constructed. But 
cultural transmission theory offers a perfect framework to investigate the in-
terplay of attribute transmission and the construction of typologies and clas-
sifications, and this is something that needs to be pursued in the future.

7.3.  THE FEASIBILITY OF A CULTURAL TRANSMISSION 
RESEARCH PROGRAM IN ARCHAEOLOGY

The simple models presented in this book make predictions in terms of pat-
terns of type frequencies in space and time. Culture-historical archaeology 
has been the dominant paradigm for decades almost everywhere in the world. 
Thousands of site reports have been published where the focus was on the 
description, both verbal and visual, of the typological variation. One would ex-
pect that this would make empirical investigation more expedient and feasible 
than some kind of analysis which would require a class of data which has only 
recently become available through expensive and time-consuming laboratory 
work. But this is not the case. It is actually very difficult to generate archae-
ological data comparable to the simulation output presented here, or com-
patible with the predictions of cultural transmission theory in general. There 
are two related major problems concerning the application of cultural trans-
mission theory in archaeology – the insufficient quantity/quality of the data, 
and the lack of a uniform way of recording the formal variability of material 
culture. Even though one can think of endless publications with tables show-
ing excavated pottery, flints or figurines, the actual assemblage sizes are very 
low, and in most cases the best one can do is record the data on the level of 
presences and absences, rather than frequencies. More ambitious researchers 
may go on and record data from museum collections, but this is an extremely 
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time- and labour-consuming process, and therefore the number of recorded 
assemblages cannot be high. But even if one succeeds in producing a frequen-
cy structure description of the greater number of assemblages (e.g. Furholt 
2009), the second major problem claims the stage – the incomparability of 
recording methods between different researchers. Unlike zooarchaeology, 
where the assemblages are always comparable, as one counts the number of 
identified specimens of universally agreed-upon categories such as species, 
in the traditional archaeological description of the material culture there is 
no such standard, as there is no such thing as a natural type of a pot or stone 
projectile. For this reason, every large-scale study of the formal variation of 
material culture usually starts from zero, which slows down the accumulation 
of knowledge and progress of science immensely. There is no ideal solution 
for this problem, but the new technology of recording data (3D scanning and 
digital photography) combined with the methods of geometric morphometrics 
(see Demján et al. 2022) and AI algorithms, may bring us closer to building the 
big data sets that could provide the detailed “phenotypic” description of the 
archaeological record which is necessary for the implementation of the evolu-
tionary approach in archaeology. 

Cultural transmission theory provides the theoretical and methodological 
bridges that connect the traditional archaeological topics with modern re-
search methods and ideas, without falling into the old traps of cultural and 
typological essentialism. It also provides a way to utilize and extract new in-
formation from the legacy of archaeological material and data. Hopefully, this 
book provides yet another illustration of how we can use these exciting new 
intellectual and analytical tools to provide a fresh perspective on the old prob-
lems, and to show how “boring” and “tedious” elements such as types, at-
tributes, classifications (Lyman 2021b) can contribute to and become a part of 
what Kristiansen (2014) labelled the third science revolution in archaeology.
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Anti-conformist transmission – A form of cultural transmission where there 
is a bias towards rare variants. There are different versions of the anti-con-
formist model – the bias can be strictly limited to the rarest variants, which 
are usually cultural mutations (completely new variants), or it can refer to a 
subset of the least frequent cultural variants, with some predefined frequency 
threshold.

Archaeological culture – A group of sites, bounded in space and time, with a 
similar material culture. 

Attribute – Any characteristic of an artifact, measured on any of the scales 
(nominal, ordinal, interval, or ratio). In the context of statistical analysis, at-
tribute is a variable which can take certain values (the number and kind of 
values depending on the scale of measurement). For example, color and height 
are attributes of a ceramic vessel. Synonyms for the term attribute are dimen-
sion and character.

Attribute state – The value which a given attribute can take. In the context of 
statistical analysis, an attribute state is a concrete value taken by a variable. 
For example, an attribute state for an attribute color of a pot can be red, or an 
attribute state for an attribute height can be 20cm. 

Assemblage – A set of artifacts which are treated as one archaeological unit, 
deposited over a certain period of time. Assemblages are defined at different 
spatial and temporal scales, depending on the research agenda and practical 
limitations. For example, assemblages may refer to groups of objects found in 
pits on a site, or to groups of objects from sites in a region.
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Axelrod model – A model of cultural transmission, named after Robert Axel-
rod, who formulated the model (Axelrod 1997). In this model, the probability 
of cultural transmission between entities (e.g. individuals or groups) is pro-
portional to the current level of similarity between them. This kind of pref-
erence is usually labelled as homophily. In simple terms, this model states 
that people are more likely to interact with (and copy cultural elements from) 
people who are similar to themselves.

Brainerd - Robinson similarity/distance – A quantitative measure of sim-
ilarity between two assemblages based on the relative frequencies of types 
in assemblages, introduced by George Brainerd (1951) and William Robinson 
(1951). The similarity between pairs of assemblages can take values between 
0 (no similarity at all) to 200 (all types have equal frequencies). The Brain-
erd-Robinson similarity measure can be transformed into distance by sub-
tracting from 200. Distance values near 0 correspond to the highest similarity 
(identical composition of assemblages) between a pair of assemblages, where-
as distance values close to 200 indicate low similarity.

Conformist transmission – A form of cultural transmission where there is a 
bias towards the most frequent variants. There are different versions of the 
conformist model – the bias can be strictly limited to the most frequent vari-
ant, or it can be more loosely defined to refer to a subset of the most frequent 
cultural variants, with some predefined frequency threshold.

Content biases – Biases which depend on the content of the cultural variant, 
i.e. their idiosyncratic properties. For example, short stories are easier to re-
member and transmit than long stories; more efficient arrow design is more 
likely to be replicated than a less efficient one. 

Context biases – Biases which depend on the context of transmission. In this 
case, the cultural variant is more likely to be transmitted not because of its 
intrinsic properties, but because of its specific context – it could be the pro-
pensity to copy the most or the least frequent variants (see conformist or an-
ti-conformist transmission), or the bias may stem from the bearer of the cul-
tural variant (prestige or perceived similarity to oneself).

Correspondence analysis – A multivariate statistical technique used to ex-
plore the relations between categorical variables and entities described on 
these variables, based on the frequencies of categories within each entity. In 
archaeology, it is often used as a seriation technique, or more generally, to 
explore the relations between assemblages and categories of units comprising 
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assemblages (e.g. species composition in zooarchaeological assemblages com-
ing from different sites or contexts within a site). The main results of a cor-
respondence analysis is a scatterplot graph which simultaneously represents 
the entities and categories – entities and categories which are close to each 
other on this graph have similar relative frequencies of entities belonging to 
different categories. For example, two site assemblages which are close in the 
space defined by the first two correspondence analysis axes have similar pro-
portions of types.

Cultural attractors – Cultural variants or meme variants which are for cog-
nitive reasons (e.g. easier to remember) or ecological reasons (e.g. easier to 
perform, sing or pronounce) more probable outcomes of the transformation 
within the cultural transmission process than others. The cultural attractor 
is an important concept in cultural attraction theory (also known as cultural 
epidemiology theory).

Cultural attraction theory – An evolutionary theory of culture which views 
the process of cultural transmission as a process of transformation of cultur-
al information, rather than as simple replication. This theory suggests that 
within each cultural transmission episode there is a shift from the original 
meme variant towards meme variants which are cultural attractors – cultural 
variant(s) which are a more probable outcome of transformation than others. 
Unlike the “standard” cultural transmission theory formulated by Boyd and 
Richerson (1985), the difference between a model and a copy is not only due 
to random error or intention, but is a product of transformations which, for 
cognitive or ecological reasons, have an inbuilt bias towards particular cultural 
variants (meme variants or attribute states). 

Cultural diffusion – The transmission of cultural information between indi-
viduals and groups in space and time.

Cultural drift – Changes in frequencies of cultural variants caused by the ef-
fects of sampling from a finite population. When cultural variants are copied 
without bias (i.e. with probability proportional only to their current frequen-
cies), and when the population size is finite, some variants will by chance be 
copied more than others, which will increase their frequency and probability 
of being copied in the next generation.

Cultural mutation – An appearance of a new cultural variant as a consequence 
of copying error in the transmission process or as a consequence of a deliber-
ate act of innovation (e.g. as a consequence of individual learning or decision).
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Cultural selection – An increase in the frequency of variants in the process of 
cultural transmission, where some of the variants have a higher probability of 
being transmitted due to their intrinsic or contextual properties. For example, 
an arrowhead design with superior performance is more likely to be transmit-
ted.

Dual inheritance theory – Otherwise known as gene-culture coevolution theory, 
this theory holds that humans have two separate, but interacting channels of 
inheritance: biological and cultural. In this theory, both of these inheritance 
systems are conceptualized as Darwinian evolutionary systems. 

Extensional definition of types – Definition of types based on the idiosyncrat-
ic properties of the objects being classified (Dunnell 1971; O’Brien & Lyman 
2000). An analyst groups the objects into types based on their similarity, with-
out having an a priori established set of dimensions or attributes and their 
potential values. Definitions of classes in such a classification are derived from 
the properties of the objects themselves, as the conditions for membership are 
based on an enumeration of the members of a class (Dunnell 1971; O’Brien & 
Lyman 2000).

Guided variation – A model of cultural transmission where the mutations are 
not random, but are biased towards existing cultural preferences. Such direc-
tional mutations are then further transmitted in an unbiased manner. 

Homophily – In general, this refers to the preference for interaction with peo-
ple who are similar to each other. In cultural transmission research, it refers to 
the preference for copying cultural traits from models culturally most similar 
to oneself.

Horizontal transmission – The social learning of cultural information from 
members of the same generation.

Infinite allele model – A model in population genetics where the number of 
potential alleles introduced by mutations is large, so that each new allele is 
different from the existing ones. 

Isochrestic variation – The term proposed by James Sackett (1982) to define 
the concept of style in anthropology and archaeology. It refers to the choice 
between functionally equivalent alternatives when making an object, and the 
variation which results from such decisions. 



229

GLOSSARY

Isolation by distance – Isolation by distance refers to the probability of in-
teraction between individuals and communities depending on their spatial 
distance. There is an inverse correlation between interaction and distance – 
communities/individuals which are less distant will have a higher probability 
of interaction than those which are far away. When it comes to cultural trans-
mission, the main effect of isolation by distance is the spatial structuring of 
culture in the form of cultural clines and the fall-off of cultural similarity in 
space.

Jaccard similarity/distance – A quantitative measure of similarity between 
two entities (artifacts or assemblages) based on the presence and absence of 
attribute states, but not taking into account shared absence. It was introduced 
by Paul Jaccard (1912). It can take values from 0 to 1, with 0 denoting no simi-
larity at all, and 1 denoting that two entities share all attribute states, i.e. they 
are identical on the attributes which are analyzed. Jaccard distance is derived 
by subtracting the value of the Jaccard similarity from 1. Distance values close 
to 1 indicate low levels of similarity, whereas distance values close to 0 indicate 
high levels of similarity.

Mantel test – The technique of calculating the statistical significance of the 
correlation between two distance matrices based on random permutations of 
the original data, formulated by Nathan Mantel (1967). In the context of ma-
trix correlation, the permutation test is used instead of the standard signif-
icance test, since the assumption of independence of observations does not 
hold when the units of observations are distances between pairs of observa-
tions. This is so because the same entity (e.g. same assemblage) will be present 
in more than one pair.

Matrix correlation – Pearson’s or Spearman’s correlation coefficient between 
two sets of distances (e.g. typological and spatial), where the units of observa-
tion are pairs of entities (usually assemblages) being compared and the vari-
ables are the two distance values associated with each pair. For example, if we 
are looking for a correlation between spatial and typological distances, each 
pair of assemblages has two coordinates, the spatial distance and the typolog-
ical distance between them. The statistical significance of these associations is 
usually tested with the Mantel test (see Mantel test).

Meme – A “unit” of cultural inheritance, introduced by Richard Dawkins 
(1976), loosely analogous to gene in biological inheritance. Unlike for a gene, 
there is no consensus on the physical manifestation and interpretation of a 
meme, or specification of its scale (e.g. a meme can be a motif in a story or an 
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entire story; a position of a single note in a tune or an entire melody). Some 
scholars conceptualize meme as a physical unit – a specifically activated neu-
ral structure in the brain – whereas others use it only as a metaphor.

Meme variant – A specific realisation of a meme, analogous to allele in biology. For 
example, a meme could be an eye type of an anthropomorphic figurine, whereas 
triangular and circular eyes would then represent particular meme variants. 

Natural selection – The increase of frequency of genes or cultural variants 
which confer adaptive advantage to individuals – those which increase the 
probability of survival and reproduction.

Neutral evolution – A differential reproduction/replication of variants (biolog-
ical or cultural) caused by the sampling effects (chance) in finite populations. 
The frequencies of successful variants do not increase because they confer some 
adaptive advantage, as in the case of natural selection, but owing to chance.

Neutral (unbiased) transmission – A cultural transmission process where 
there is no bias or preference for any of the variants, which means that the 
probability of their transmission is proportional to their current frequencies.

Oblique transmission – Social learning of cultural information from members 
of the parental generation other than one’s parents.

Paradigmatic classification – In systematics, a method of creating classes by 
intersection of all of the attributes (dimensions) by which an artifact is de-
scribed (Dunnell 1971; O’Brien & Lyman 2000). For example, if anthropomor-
phic figurines are described by two attributes such as eye shape (with attribute 
states circular (C) and triangular (T)) and color (with attribute states red (R) 
and black (B)), then the potential classes (types) are CR, CB, TR, and TB, where 
the first letter marks the attribute state of the eye shape, and the second one 
marks the attribute state of the color.

Phylogenetics – A study of evolutionary relationships between entities with 
an aim to reveal the structure of ancestor-descendant relations. Cultural phy-
logenetics is concerned with a reconstruction of the evolutionary history of 
cultural elements based on their attributes, where the main aims are to identi-
fy the presence of the phylogenetic signal and to establish the historical-evo-
lutionary tree, which shows how the cultural elements are related to each oth-
er in terms of sharing common ancestors or being in ancestor-descendant 
relations to each other. 
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Prestige bias – Bias towards cultural variants held by individuals of high sta-
tus (prestige).

Seriation – A method of relative dating in archaeology based on the principle 
that the units (artifacts or assemblages of artifacts) should be arranged in a 
sequence, such that the most similar units are next to each other. 

Time-averaging – The process which affects the properties of archaeological 
assemblages as objects deposited at different times within a wider temporal 
interval are aggregated into a larger temporal unit, as archaeologists are una-
ble to resolve their chronology at finer temporal scales. For example, a pottery 
assemblage from a cultural layer on a site which was accumulated over 50 
years without clear stratigraphic breaks will be treated as one unit. This as-
semblage is time-averaged, as the frequencies of pot types do not reflect the 
structure of a set of objects deposited in a single moment in time or some nar-
row temporal interval like a year, but represent a mixture of several deposition 
episodes over the duration of an archaeological unit. 

Type – In this book, the term type is understood as a paradigmatic class – 
which means a specific combination of attributes states. It is synonymous 
with cultural variant or meme variant in this context. The types are sometimes 
conceptualized as abstractions, or idealisations, and operationalised through 
statistical summaries, but this is not the view taken here.

Unimodality – Refers to the distribution of relative frequencies of types within 
assemblages arranged in a sequence. Unimodal sequences are such that rel-
ative frequencies of each type in a sequence exhibit one of three patterns: 1) 
increase, peak, decrease 2) increase, peak 3) peak, decrease. The peak is the 
maximum relative frequency of a type found in one or several assemblages 
which are being seriated, when ordered into a sequence.

Universal Darwinism – A generalization of the basic principles of Darwini-
an evolution applied to any system, regardless of its physical medium, where 
three conditions are met: 1) presence of transmission of information between 
entities in a population (descent) 2) potential for the generation of new infor-
mation (modification) 3) potential for the differential preservation of infor-
mation (evolutionary process). 

Vertical transmission – Refers to the process whereby children learn cultural 
information from their parents.
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APPENDIX 1

R CODE FOR THE SIMULATION OF CULTURAL TRANSMISSION 
IN SPACE AND TIME FOR THE NEUTRAL, CONFORMIST, AND 
ANTI-CONFORMIST MODELS

Generating the spatial grid

l = 20 #number of cells on the x axis

w = 20 #number of cells on the y axis

Dataset <- matrix(0, l*w, 2)

Dataset[,2] <- rep(c(1:w),l)

x <- c()

for(i in 1:l){

x <- c(x, rep(i,w)) 

}

Dataset[,1] <- x

plot(Dataset[,1], Dataset[,2]) #plots the grid

The simulation
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#######Function for sampling (unknown source)

resamp <- function(x,...){if(length(x)==1) x else sample(x,...)} 

########

###Function for counting modes

Mode <- function(x) {

mastervariants <- as.numeric(levels(factor(x)))

varcount <- c(rep(0,length(mastervariants)))

for(m in 1:length(mastervariants))

 {

 index <- which(x==mastervariants[m])

 varcount[m] <- length(index)

 }

indexvar <- which(varcount==(max(varcount)))

result <- mastervariants[indexvar]

result <- resamp(result, 1)

return(result)

}

#########Loading the spatial grid and calculating the probability 

of interaction based on the inverse squared distance

distraw <- dist(Dataset[,1:2], method=”euclidean”, upper = TRUE, 

diag =TRUE, p = 2)

distraw <- as.matrix(distraw)
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simraw <- 1/(distraw^2)

######Basic simulation setup

Nz = 100   #Living (systemic) assemblage size

Nlok = length(Dataset[,1]) #Number of cells

NU = 0.005 # the mutation rate

M = 0.1#probability of intercommunity interaction

conf = 0 #probability of conformist behavior

conserv = 0 #probability of keeping the same variant – the 

retention bias (not used in any of the simulations in the book)

novel = 0 # probability of anti-conformist behavior 

######Generating probabilities of interaction based on the 

distances between sites 

for(i in 1:Nlok) {

 for(j in 1:Nlok) {

if(i==j) {simraw[i,j]=100};

}

}

for(i in 1:Nlok) {

indexne1 <- as.vector(which(simraw[i,]!=100))

simraw[i,indexne1] <- simraw[i, indexne1]*(M/

sum(simraw[i,indexne1])) 
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index1 <- as.vector(which(simraw[i,]==100))

simraw[i,index1] = 1-M

}

sum(simraw[1,2:Nlok])

moddist <- simraw

################################### Simulation

Iter = 1000 #Number of iterations (duration of the simulation 

run)

L = 2 #average item use-life

z = 1/L 

pocetni <- round(runif(Nz, 1,10),0)

lokmatr <- cbind(pocetni, matrix(0, Nz, Iter-1))

Nzarh = round(Nz*z,0)

lokmatrarh <- matrix(0, Nzarh, Iter-1)

ANTR <- list(lokmatr)   

for(k in 1:Nlok) {

ANTR[[k]] <- lokmatr

}

ARH <- list(lokmatrarh)  

for(k in 1:Nlok) {

ARH[[k]] <- lokmatrarh
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}

inov = max(pocetni)+1

tempinov <- c()

INOV <- list()

for(k in 1:Nlok){

INOV[[k]] <- c(NA)

}

for(m in 2:Iter){

cat(m,’\n’)

 for(q in 1:Nlok) {

  arhindeks <- sample(1:Nz, Nzarh, replace=FALSE)

              ARH[[q]][,(m-1)] <- ANTR[[q]]

[arhindeks,(m-1)]

  ANTR[[q]][-arhindeks,m] <- ANTR[[q]]

[-arhindeks,(m-1)]  

for(i in 1:length(arhindeks)) {

stoh1 <- sample(c(1,2,3,4,5), 1, prob=c(conf, (1-NU-conf-novel-

conserv), NU, novel, conserv))

if(stoh1 == 1) {ANTR[[q]][arhindeks[i],m] <- Mode(ANTR[[q]][,m-

1])} else {wer = 1}

if(stoh1 == 3) {ANTR[[q]][arhindeks[i],m] <- inov; tempinov <- 

c(tempinov, inov); inov = inov + 1;} else {wer = 2}
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if(stoh1 == 2) {lok<- sample(c(1:Nlok),1, prob=moddist[q,]); h 

<- sample.int(Nz,1); ANTR[[q]][arhindeks[i],m] <- ANTR[[lok]]

[h,(m-1)];} else {wer=3} 

if(stoh1 == 4) {if(is.na(INOV[[q]][1])== FALSE) {ANTR[[q]]

[arhindeks[i],m] <- resamp(INOV[[q]],1);} else {lok<- 

sample(c(1:Nlok),1, prob=moddist[q,]); h <- sample.int(Nz,1); 

ANTR[[q]][arhindeks[i],m] <- ANTR[[lok]][h,(m-1)];};} else 

{wer=4}

if(stoh1 == 5) {ANTR[[q]][arhindeks[i],m] <- ANTR[[q]]

[arhindeks[i],m-1];} else {wer=5}

} 

if(length(tempinov)==0) {INOV[[q]] <- c(NA)} else {INOV[[q]] <- 

tempinov}

tempinov <- c()

    } 

}  

Collecting output data (for synchronous assemblages, as in Chapter 5)

#####Time -averaging

startpoint= 100# set the start limit of the aggregation interval

endpoint= 149  # set the end limit of the aggregation interval

dataraw <- matrix(0, Nlok, Nzarh*(endpoint-startpoint+1))

for(q in 1:Nlok) {

dataraw[q,] <- as.vector(ARH[[q]][,startpoint:endpoint])
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}

#Generating the data matrix

mastervariants <- as.numeric(levels(factor(dataraw)))

varcount <- matrix(0, Nlok, length(mastervariants))

for (g in 1:(Nlok)) {

cat(g,’\n’)

for (m in 1:length(mastervariants)) {

index <- which(dataraw[g,]==mastervariants[m])

varcount[g,m] <- length(index)

};

}

varcount ####The output data matrix with cell assemblages in 

rows and types in columns. Each cell of the matrix gives the 

frequency of the ith type in the jth assemblage.

Collecting output data (for asynchronous assemblages, as in Chapter 6) 

ss = 600 #lower boundary of the temporal window (in iterations)

se = 750  #upper boundary for the midpoint of the temporal 

window (e.g. if

#the desired width of the temporal window is 200 iterations, the 

length of #the time-averaging interval is 50 iterations, and the 

lower boundary is #600, then this upper boundary should be set 

to 750).
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interval=50 #the length of time-averaging interval (in 

iterations)

dataraw <- matrix(0, Nlok, Nzarh*interval)

timepoint <- c(1:Nlok) #midpoints of aggregation intervals

for(q in 1:Nlok) {

startpoint= sample(c(ss:se),1)

endpoint= startpoint+interval-1

timepoint[q] <- (startpoint+endpoint)/2

dataraw[q,] <- as.vector(ARH[[q]][,startpoint:endpoint])

}

#Generating the data matrix

mastervariants <- as.numeric(levels(factor(dataraw)))

varcount <- matrix(0, Nlok, length(mastervariants))

for (g in 1:(Nlok)) {

cat(g,’\n’)

for (m in 1:length(mastervariants)) {

index <- which(dataraw[g,]==mastervariants[m])

varcount[g,m] <- length(index)

};

}
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varcount ####The output data matrix with cell assemblages in 

rows and types in columns. Each cell of the matrix gives the 

frequency of the ith type in the jth assemblage.





APPENDIX 2

R CODE FOR THE SIMULATION OF THE AXELROD MODEL

Generating the spatial grid

l = 20 #number of cells on the x axis

w = 20 #number of cells on the y axis

Dataset <- matrix(0, l*w, 2)

Dataset[,2] <- rep(c(1:w),l)

x <- c()

for(i in 1:l){

x <- c(x, rep(i,w)) 

}

Dataset[,1] <- x

plot(Dataset[,1], Dataset[,2]) #plots the grid

The simulation

#######Function for sampling (unknown source)
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resamp <- function(x,...){if(length(x)==1) x else sample(x,...)} 

########

###Function for counting modes

Mode <- function(x) {

mastervariants <- as.numeric(levels(factor(x)))

varcount <- c(rep(0,length(mastervariants)))

for(m in 1:length(mastervariants))

 {

 index <- which(x==mastervariants[m])

 varcount[m] <- length(index)

 }

indexvar <- which(varcount==(max(varcount)))

result <- mastervariants[indexvar]

result <- resamp(result, 1)

return(result)

}

#########Loading the spatial grid and calculating the probability 

of interaction based on the inverse squared distance

distraw <- dist(Dataset[,1:2], method=”euclidean”, upper = TRUE, 

diag =TRUE, p = 2)

distraw <- as.matrix(distraw)

simraw <- 1/(distraw^2)
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##############Function for calculating the Brainerd-Robinson 

distances/similarities (Alberti 2021b)

library(vegan)

############B-R similarity coefficent function###

BRsim <- function(x, correction, rescale) {

  if(require(corrplot)){

    print(“corrplot package already installed. Good!”)

  } else {

    print(“trying to install corrplot package...”)

    install.packages(“corrplot”, dependencies=TRUE)

    suppressPackageStartupMessages(require(corrplot))

  }

  rd <- dim(x)[1]

  results <- matrix(0,rd,rd)

  if (correction == T){

    for (s1 in 1:rd) {

      for (s2 in 1:rd) {

        zero.categ.a <-length(which(x[s1,]==0))

        zero.categ.b <-length(which(x[s2,]==0))

        joint.absence <-sum(colSums(rbind(x[s1,], x[s2,])) == 0)

        if(zero.categ.a==zero.categ.b) {
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          divisor.final <- 1

        } else {

          divisor.final <- max(zero.categ.a, zero.categ.b)-joint.

absence+0.5

        }

        results[s1,s2] <- round((1 - (sum(abs(x[s1, ] / 

sum(x[s1,]) - x[s2, ] / sum(x[s2,]))))/2)/divisor.final, digits=3)

      }

    } 

  } else {  

    for (s1 in 1:rd) {

      for (s2 in 1:rd) {

        results[s1,s2] <- round(1 - (sum(abs(x[s1, ] / 

sum(x[s1,]) - x[s2, ] / sum(x[s2,]))))/2, digits=3)

      }

    }

  }

  rownames(results) <- rownames(x)

  colnames(results) <- rownames(x)

  col1 <- colorRampPalette(c(“#7F0000”, “red”, “#FF7F00”, 

“yellow”, “white”, “cyan”, “#007FFF”, “blue”, “#00007F”))

  if (rescale == F) {

    upper <- 200
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    results <- results * 200

  } else { 

    upper <- 1.0

  }

  return(results)

}

######Basic simulation setup

Nz = 100   #Living (systemic) assemblage size

Nlok = length(Dataset[,1]) #Number of cells

NU = 0.005 # the mutation rate

M = 0.1#probability of intercommunity interaction

conf = 0 #probability of conformist behavior

conserv = 0 #the probability of keeping the same variant – the 

retention bias (not used in any of the simulations in the book)

novel = 0 # the probability of anti-conformist behavior (not 

used in any of the simulations in the book)

######Generating probabilities of interaction based on the 

distances between sites 

for(i in 1:Nlok) {

 for(j in 1:Nlok) {
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if(i==j) {simraw[i,j]=100};

}

}

for(i in 1:Nlok) {

indexne1 <- as.vector(which(simraw[i,]!=100))

simraw[i,indexne1] <- simraw[i, indexne1]*(M/

sum(simraw[i,indexne1])) 

index1 <- as.vector(which(simraw[i,]==100))

simraw[i,index1] = 1-M

}

sum(simraw[1,2:Nlok])

moddist <- simraw

################################### Simulation

Iter = 1000 #Number of iterations

L = 2 #average item use-life

z = 1/L 

pocetni <- round(runif(Nz, 1,10),0)

lokmatr <- cbind(pocetni, matrix(0, Nz, Iter-1))

Nzarh = round(Nz*z,0)

lokmatrarh <- matrix(0, Nzarh, Iter-1)

ANTR <- list(lokmatr)   
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for(k in 1:Nlok) {

ANTR[[k]] <- lokmatr

}

ARH <- list(lokmatrarh)  

for(k in 1:Nlok) {

ARH[[k]] <- lokmatrarh

}

inov = max(pocetni)+1

tempinov <- c()

INOV <- list()

for(k in 1:Nlok){

INOV[[k]] <- c(NA)

}

for(m in 2:Iter){

cat(m,’\n’)

#####Generating the matrix of current typological similarity 

between pairs of cells###

dataraw <- matrix(0, Nlok, Nz)

for(p in 1:Nlok) {

dataraw[p,] <- as.vector(ANTR[[p]][,(m-1)])
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}

mastervariants <- as.numeric(levels(factor(dataraw)))

varcount <- matrix(0, Nlok, length(mastervariants))

for (g in 1:(Nlok)) {

for (n in 1:length(mastervariants)) {

index <- which(dataraw[g,]==mastervariants[n])

varcount[g,n] <- length(index)

};

}

tipsim <- BRsim(varcount, correction=F, rescale=T)

tipsim <- as.matrix(tipsim)

index <- which(tipsim < 0.5) # the value in the brackets is the 

similarity threshold for the interaction (it is a rescaled BR 

similarity coefficient which can take values from 0 to 1)

tipsim[index] = 0

moddist1 = moddist

for(p in 1:Nlok) {

if(sum(tipsim[p,which(tipsim[p,]!=1)])==0) 

{tipsim[p,]=tipsim[p,]; moddist1[p,p]=1} 

else {tipsim[p,which(tipsim[p,]!=1)] 

<- tipsim[p,which(tipsim[p,]!=1)]/

sum(tipsim[p,which(tipsim[p,]!=1)])}
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}

probsim = moddist1*tipsim

for(u in 1:Nlok) {        

korig <- probsim[u,][which(probsim[u,]!=(1-M))] 

if(sum(korig)==0) {probsim[u,u]=1} else {korig <- (M*korig)/

sum(korig); probsim[u,][which(probsim[u,]!=(1-M))] = korig}

}

 for(q in 1:Nlok) {

  arhindeks <- sample(1:Nz, Nzarh, replace=FALSE)

              ARH[[q]][,(m-1)] <- ANTR[[q]]

[arhindeks,(m-1)]

  ANTR[[q]][-arhindeks,m] <- ANTR[[q]]

[-arhindeks,(m-1)]  

for(i in 1:length(arhindeks)) {

stoh1 <- sample(c(1,2,3,4,5), 1, prob=c(conf, (1-NU-conf-novel-

conserv), NU, novel, conserv))

if(stoh1 == 1) {ANTR[[q]][arhindeks[i],m] <- Mode(ANTR[[q]][,m-

1])} else {wer = 1}

if(stoh1 == 3) {ANTR[[q]][arhindeks[i],m] <- inov; tempinov <- 

c(tempinov, inov); inov = inov + 1;} else {wer = 2}

if(stoh1 == 2) {lok<- sample(c(1:Nlok),1, prob=probsim[q,]); h 

<- sample.int(Nz,1); ANTR[[q]][arhindeks[i],m] <- ANTR[[lok]]

[h,(m-1)];} else {wer=3} 

if(stoh1 == 4) {if(is.na(INOV[[q]])== FALSE) {ANTR[[q]]

[arhindeks[i],m] <- resamp(INOV[[q]],1);} else {lok<- 

sample(c(1:Nlok),1, prob=probsim[q,]); h <- sample.int(Nz,1); 
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ANTR[[q]][arhindeks[i],m] <- ANTR[[lok]][h,(m-1)];};} else 

{wer=4}

if(stoh1 == 5) {ANTR[[q]][arhindeks[i],m] <- ANTR[[q]]

[arhindeks[i],m-1];} else {wer=5}

if((((stoh1==2)|(stoh1==4))&(q != lok))==TRUE) {tempinov <- 

c(tempinov, ANTR[[q]][arhindeks[i],m]);} else {wer=344}

} 

if(length(tempinov)==0) {INOV[[q]] <- c(NA)} else {INOV[[q]] <- 

tempinov}

tempinov <- c()

    } 

}  

Collecting output data

#####Time -averaging

startpoint= 100# set the start limit of the aggregation interval

endpoint= 149  # set the end limit of the aggregation interval

dataraw <- matrix(0, Nlok, Nzarh*(endpoint-startpoint+1))

for(q in 1:Nlok) {

dataraw[q,] <- as.vector(ARH[[q]][,startpoint:endpoint])

}

#Generating the data matrix

mastervariants <- as.numeric(levels(factor(dataraw)))
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varcount <- matrix(0, Nlok, length(mastervariants))

for (g in 1:(Nlok)) {

cat(g,’\n’)

for (m in 1:length(mastervariants)) {

index <- which(dataraw[g,]==mastervariants[m])

varcount[g,m] <- length(index)

};

}

varcount ####The output data matrix with assemblages in rows and 

types in columns. Each cell of the matrix gives the frequency of 

the ith type in the jth assemblage.





APPENDIX 3

R CODE FOR THE SIMULATION OF THE NEUTRAL, 
CONFORMIST AND ANTI-CONFORMIST MODEL OF CULTURAL 
TRANSMISSION FOR THE SINGLE COMMUNITY CASE

#######Function for sampling (unknown source)

resamp <- function(x,...){if(length(x)==1) x else sample(x,...)} 

########

###Function for counting modes

Mode <- function(x) {

mastervariants <- as.numeric(levels(factor(x)))

varcount <- c(rep(0,length(mastervariants)))

for(m in 1:length(mastervariants))

 {

 index <- which(x==mastervariants[m])

 varcount[m] <- length(index)

 }
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indexvar <- which(varcount==(max(varcount)))

result <- mastervariants[indexvar]

result <- resamp(result, 1)

return(result)

}

####Basic simulation setup

t = 1000 # Number of iterations (duration of the simulation run)

Pt = 100 #Item population size

L = 2 #average item use-life

z = 1/L 

mu = 0.005 #mutation rate

conf = 0 #s probability of conformist behavior

novel = 0# probability of anti-conformist behavior (not used in 

any of the simulations in the book)

conserv = 0 # probability of keeping the same variant – the 

retention bias (not used in any of the simulations in the book)

arh <- list() 

P <- rep(Pt,t) #Population size

S = P #systemic number of items 

antr <- sample(c(1:10), S[1], replace=TRUE) 

inov = max(antr) + 1
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for(i in 1:t) {

Nzarh = round(z*length(antr),0)

arhindeks <- sample(1:length(antr), Nzarh, replace=FALSE)

arh[[i]] <- antr[arhindeks]

antrold <- antr

stoh <- runif(length(arhindeks), 0,1)

mutindeks <- which(stoh <= mu)

retindeks <- which((stoh>mu)&(stoh<=(mu+conserv)))

confindeks <- which((stoh>(mu+conserv))&(stoh<=(mu+conserv+conf)))

novelindeks <- 

which((stoh>(mu+conserv+conf))&(stoh<=(mu+conserv+conf+novel)))

neindeks <- c(mutindeks, retindeks, confindeks, novelindeks)

inovektor <- c(inov:(inov+length(mutindeks)-1))

if(length(mutindeks)>0) {antr[arhindeks][mutindeks] <- inovektor; 

inov =  inov+length(mutindeks)-1+1;} else {wer=1}

if(length(retindeks)>0) {antr[arhindeks][retindeks] <- 

antr[arhindeks][retindeks]} else {wer=1}

if(length(confindeks)>0) {antr[arhindeks][confindeks] <- 

rep(Mode(antrold), length(confindeks))} else {wer=1} 

if((i>1)&(length(novelindeks)>0)) {antr[arhindeks][novelindeks] 

<- resamp(inovektorold, length(novelindeks),replace=TRUE)} else 

{wer=1}
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inovektorold <- inovektor

if(length(neindeks)>0) {antr[arhindeks][-neindeks] <- 

resamp(antrold, length(arhindeks[-neindeks]), replace=TRUE)} 

else {antr[arhindeks] <- resamp(antrold, length(arhindeks), 

replace=TRUE)}

}

Collecting output data

accuminterval = 100  #length of the aggregation interval in 

number of iterations

brojkoraka = t/accuminterval

mastervariants <- as.numeric(levels(factor(unlist(arh))))

varcount <- matrix(0, brojkoraka, length(mastervariants))

g = 1

for(i in seq(1, t, accuminterval)) {

for (m in 1:length(mastervariants)) {

index <- which(unlist(arh[i:(i+accuminterval-

1)])==mastervariants[m])

varcount[g,m] <- length(index)

};

g = g+1

}

varcount   # The output data matrix with assemblages (in the true temporal 
sequence) in rows and types in columns. Each cell of the matrix gives the fre-
quency of the ith type in the jth assemblage.
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MODIFICATION OF THE SERIATION COEFFICIENT AND THE 
ASSOCIATED R CODE

A4.1.  THE PROBLEM WITH THE SERIATION COEFFICIENT

The first issue has to do with the seriation or unimodality coefficient from 
Porčić (2013a). If we look at this coefficient ( Equation 5.1) as a function of O 
(observed number of modes), for fixed Max (maximum number of modes) and 
E (expected number of modes), it is apparent that it is a linear function of O, 
the observed number of modes: 

EMax �
�

1
 (Eq. A4.1)

The slope of this function is equal to EMax �
�

1
. As both Max and E are positive 

integers, this means that the slope will always be less than one, and its mag-
nitude will be highly influenced by the potential maximum number of modes 
(Max) – the larger the maximum for a given number of types, the smaller 
the slope. If we look at how the seriation coefficient of a data matrix with 40 
assemblages and 20 types changes as a function of the observed number of 
modes (ranging from 20 to the maximum of 400 modes), expressed as both 
the total number of modes and the number of modes per type, we will notice 
that S decreases very slowly (Figure A4.1). 
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Figure A4.1.   The seriation coefficient for the hypothetical data set containing 40 assemblages and 20 
types changes linearly, as a function of the total number and the number of modes per 
type.

A4.2.  FIXING THE SERIATION COEFFICIENT

As noted earlier, it is the maximum number of modes that exerts the great 
influence on the slope. For a fixed number of types and observed number of 
modes, increasing the maximum number of modes has a strong non-linear 
effect on the seriation coefficient (Figure A4.2), causing the seriation coef-
ficient to increase very quickly. The maximal number of modes as it was de-
fined in Porčić (2013a) was dependent on only two parameters: the number of 
assemblages and the number of types. It was also dependent on an unstated 
assumption that the data were such that by permuting the assemblages it was 
possible to find a sequence with the number of modes equal to the calculated 
maximum. But for many real data sets this is not the case.



263

APPENDIX 4

Figure A4.2.   The values of the seriation coefficient for the fixed number of modes increases very 
quickly with the increase of the maximal number of modes.

The procedure for calculating the maximal number of modes needed for the 
calculation of the seriation coefficient may sometimes grossly overestimate 
the true maximum and thus inflate the value of the coefficient, as it assumes 
that all assemblages have different proportions of types. This overestima-
tion will occur if there is a great number of tied values (different assemblag-
es having the same proportion of a type). Whereas this is very unlikely for 
the non-zero values of proportions, cases where many assemblages have zero 
counts for some types are relatively common in archaeology. For this reason, it 
is necessary to find a way to make a more realistic estimation of the potential 
maximum number of modes in order not to inflate the seriation coefficient. 

There are two solutions of this problem. The first is to use the results of the 
permutation test for  significance testing in order to estimate numerically  the 
maximum number of nodes that can occur by permuting the frequencies of 
the original data set (Porčić 2013a). The permutation procedure counts the 
total number of modes for each permutation. The maximum number of modes 
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observed across all generated permutations would be a realistic numerical es-
timate of the potential number of modes of the random data. However, this 
may be an underestimate, as randomization of the data is not the same thing 
as finding a sequence that has the maximum number of nodes.

The second solution is analytically to arrive at a way to calculate the potential 
maximum number of modes based on the actual data. This second solution is 
followed in this book. All calculations of the seriation coefficient S1 are based 
on this solution. 

A4.3.  THE WAY OF ESTIMATING THE POTENTIAL MAXIMAL 
NUMBER OF MODES FOR A PARTICULAR DATA TABLE

In order to calculate a realistic estimate of the maximum number of modes based 
on the actual data, the following steps are performed for each type. First, the as-
semblages are sorted in ascending order, based on the proportion of the particu-
lar type that is being considered. This sequence is then split by the median into 
two ranked subsets that I shall call the high and the low value sets. If the number 
of assemblages (n) is even, then the number of elements in the subsets will be 
equal; if not, then the high value set should include the median, whereas a zero 
should be added to the end (to be the last value) of the low subset. The next step 
is to subtract the corresponding values (i.e. those having the same position or 
index) of the high and low subsets. This could also be expressed in vector no-
tation. The high value subset is h, the low value subset is l, and the difference 
vector d, where i denotes the index (always an integer) of each assemblage.

For the case with an even number of assemblages, the equations are:
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    (Eq. A4.2)

For the case with an uneven number of assemblages, the equations are:
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The potential maximum number of modes for a given type is equal to the number 
of non-zero entries of the difference vector d, whereas the potential maximum 
of the number of modes for an entire dataset (including all types) is the sum of 
calculated maximum values for each type. To see why this is so, we should look 
at the figure where this procedure is represented graphically. If we align the 
high and the low value subsets as presented in Figure A4.3, with the high value 
subset on the left side, and use these high-low value subset pairs to create a 
sequence starting from the top, the result will be a sequence with the maximum 
possible number of modes, as the value on the left will always be higher or equal 
to the value on the right, because one comes from the subset that is lower and 
the other that is higher than the median. In this way we are maximizing the 
alternation between higher and lower values, thus producing the sequence with 
the maximum number of modes possible for a given set of type proportions.

The zero in a case of uneven number of assemblages is added only as a com-
putational convenience i.e. to make the number of elements in both subsets 
equal, so that the vector notation and programming are applicable. The high-
est value of the high value subset will always be higher than the highest value 
of the low value subset, unless they are all equal to the median. 

It should be noted that this method might also overestimate the poten-
tial maximum number of modes, as the types are considered independently 
(which is not possible in reality, because reordering assemblages for one type 
also means reordering them for all other types). In any case, this method will 
be used to estimate the potential maximum number of modes for all the anal-
yses that follow. 

Figure A4.3.    Schematic representation for establishing the sequence with the maximum number of 
modes for a given type.
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A4.5. R CODE

A4.5.1.  The code for the estimation of the potential maximal number of 
modes from the empirical data

MAXmod <- function(x) {

d <- length(x)

x <- sort(x)

medindex <- median(c(1:d))

if(d %% 2 == 0) {xhigh <- x[(0.5*d+1):d]; xlow <- x[1:(d*0.5)]} 

else {xhigh <- x[medindex:d]; xlow <- x[1:(medindex-1)]}

if(d %% 2 != 0) {xlow <- c(xlow,0)} else {xlow=xlow}

difference <- xhigh - xlow

MAXmod <- length(difference[which(difference>0)])

if(var(x)==0) {MAXmod = 1} else {MAXmod = MAXmod}

MAXmod 

}

The input for this function is the matrix where entries are the proportions of 
types (columns) in assemblages (rows).

A4.5.2.  The new function for calculating the total number of modes of a 
sequence

When I published the original paper on the construction of the seriation coef-
ficient I also included the R code as supplementary electronic material (Porčić 
2013a). The function for counting the number of modes from a relative fre-
quency data table was taken from one of the R internet forum posts (I am guilty 
of not citing the source, as I thought that it was a generic piece of code) which 
came up in a Google search. In the meantime, I noticed that this function can 
in very rare circumstances (when the equal proportions are in a sequence) 
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produce erroneous counts. For this reason, I wrote my own code for counting 
the number of modes:

#Defining function for counting modes

Nmod <- function(x) {

diff <- c()

for(i in 1:(length(x)-1)) {

diff[i] <- x[i] - x[i+1]

}

sign <- sign(diff)

signotherthanzero <- sign[which(sign != 0)]

n = 1

if(length(signotherthanzero)<2) {Nsingle=1} else {

for(i in 1:(length(signotherthanzero)-1)) {

diff2 <- signotherthanzero[i]-signotherthanzero[i+1]

if(abs(diff2)!=2) {n = n} else {n = n + 1}

}

}

rof = signotherthanzero[1]

nchanges <- n

if(length(signotherthanzero)<2) {Nmod=Nsingle} else {if(nchanges 

%% 2==0) {if(rof==1) {Nmod= nchanges*0.5+1} else {Nmod = 

nchanges*0.5}} else {Nmod=(nchanges+1)/2}}
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Nmod

}

A4.5.3.  The new code for the seriation permutation test

Given the changes I made in the function for estimating the potential maximal 
number of modes and the function for counting the number of modes, I pres-
ent a revised version of the full code for the seriation permutation test based 
on Porčić (2013a):

R CODE FOR PERFORMING THE PERMUTATION SIGNIFICANCE 
TEST

library(ca)   #library ca has to be installed 

library(plyr) #library plyr has to be installed

Perm <- 1000  # Perm sets the number of permutations for the 

randomization test. The default is 1000 but it can be changed by 

the user.

PERM <- c(1:Perm)     

#Defining function for counting modes

Nmod <- function(x) {

diff <- c()

for(i in 1:(length(x)-1)) {

diff[i] <- x[i] - x[i+1]

}

sign <- sign(diff)

signotherthanzero <- sign[which(sign != 0)]

n = 1
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if(length(signotherthanzero)<2) {Nsingle=1} else {

for(i in 1:(length(signotherthanzero)-1)) {

diff2 <- signotherthanzero[i]-signotherthanzero[i+1]

if(abs(diff2)!=2) {n = n} else {n = n + 1}

}

}

rof = signotherthanzero[1]

nchanges <- n

if(length(signotherthanzero)<2) {Nmod=Nsingle} else {if(nchanges 

%% 2==0) {if(rof==1) {Nmod= nchanges*0.5+1} else {Nmod = 

nchanges*0.5}} else {Nmod=(nchanges+1)/2}}

Nmod

}

#Defining function for calculating the potential maximum number 

of modes

MAXmod <- function(x) {

d <- length(x)

x <- sort(x)

medindex <- median(c(1:d))

if(d %% 2 == 0) {xhigh <- x[(0.5*d+1):d]; xlow <- x[1:(d*0.5)]} 

else {xhigh <- x[medindex:d]; xlow <- x[1:(medindex-1)]}

if(d %% 2 != 0) {xlow <- c(xlow,0)} else {xlow=xlow}

difference <- xhigh - xlow
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MAXmod <- length(difference[which(difference>0)])

if(var(x)==0) {MAXmod = 1} else {MAXmod = MAXmod}

MAXmod 

}

#Reading data#

# Select and Copy a complete data table (without the assemblage 

and type labels i.e. without header) from a spreadsheet

data <- read.table(“clipboard”) #after copying the data from the 

spreadsheet, run this line 

#Performing correspondence analysis (CA) on the data and 

calculating the number of modes for the CA solution

M <- length(data[1,])

a <- c(1:M)

b <- c(1:M)

data2 <- as.matrix(data)

ord <- ca(data)$rowcoord[,1]

data <- as.matrix(data)

data1 <- cbind(ord, data)

data1 <- as.data.frame(data1)

G <- arrange(data1, desc(ord))

matr <- G[,2:(M+1)]/(apply(G[,2:(M+1)],1, sum))
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for(j in 1:M) {

a[j] <- Nmod(matr[,j])

}

sum(a) #gives the observed total of modes

####################Calculating the seriation (S) unimodality 

coefficient for the empirical data#####################

maxcol <- c()

for(j in 1:M) {

maxcol[j] <- MAXmod(matr[,j])

}

MAXanalit = sum(maxcol)

S = (MAXanalit - sum(a))/(MAXanalit-M) ### Seriation coefficient 

(S)

# Generating the distribution of total number of modes with 

randomized data

for(i in 1:Perm) {

for(j in 1:M) {

data2[,j] <- sample(data[,j], replace = FALSE)

}

ord <- ca(data2[which(rowSums(data2)>0),])$rowcoord[,1]

data2 <- as.matrix(data2)

data3 <- cbind(ord, data2[which(rowSums(data2)>0),])
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data3 <- as.data.frame(data3)

G <- arrange(data3, desc(ord))

matr <- G[,2:(M+1)]/(apply(G[,2:(M+1)],1, sum))

for(j in 1:M) {

b[j] <- Nmod(matr[,j])}

PERM[i] <- sum(b)}

hist(PERM)         # Draws a histogram of randomized total 

number of modes       

quantile(PERM, 0.05) # Gives the value of the 5th percentile of 

the randomized distribution of total number of modes
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